SYMMETRY

There are two kinds of symmetry:
a) reflective symmetry
b) rotational symmetry
a) Reflective Symmetry

A shape which can be divided by a straight line, so that each part is the mirror image of the other has reflective symmetry.

It is easy to tell if a shape has this type of symmetry if you think of folding the shape as you would a piece of paper.

You are often asked how many lines of symmetry a given shape has.

Examples:

Isosceles Triangle

Rectangle

Square

Circle

Infinite number of lines of symmetry

BUT

।

1 line of symmetry
Also, there are many shapes which have no reflective symmetry

Scalene Triangle i.e. triangle with all sides different.

Parallelogram

This one is rather surprising

Exercise 1

1. Look at the following letters and if there are any lines of symmetry draw them in.

b) Rotational Symmetry

A figure which looks the same after it has been turned through an angle about some point is said to have rotational symmetry.

Example 1

Example 2

The figure will have a definite centre. Call it O . Think of sticking a pin at O , and then turning the shape round a small amount at a time, so that it looks exactly the same as it did before the rotation.

The order of symmetry describes the number of different turns which will give the same appearance.

For example, 1 above (adding letters so that we can follow the moves) we have:

There are $\mathbf{3}$ distinct positions.
Each time we spun through an angle of 120°.
Figure has symmetry of order 3.

For example, 2 we can find 4 positions each time turning through \square
So, the shape has rotational symmetry of order 4.
So, a rule could be
"Decide the angle of the turn. Divide 360° by the size of the angle. This gives the order of symmetry."

If you have to turn a shape round 360° before it looks the same then it has no rotational symmetry.

Example

(Note: we do not say order 1!)
Many familiar shapes will have both reflective and rotational symmetry.

Example

Square

$\xrightarrow[90^{\circ}]{ }$

90°

90°

Rotational symmetry of order 4.

Equilateral Triangle

Rotational symmetry of order 3.

Exercise 2

1. Now look at the following letters, and if they have rotational symmetry, mark the centre of rotational with the letter 0 , and give the order of rotational symmetry.
2. Sketch each of the following shapes and if they have rotational symmetry mark the centre of rotation with the letter o and give the order of rotational symmetry.
i) Rectangle
ii) Rombus
vi) Kite
iii) Square
vii) Isosceles Triangle
iv) Regular Hexagon
vi) Circle

TRANSFORMATION GEOMETRY

When a shape has been drawn on squared paper, you may be asked to move it around the page in a variety of ways.

These are called:

1. Reflection
2. Rotation
3. Translation
4. Enlargement

In this pack, we will introduce reflection and rotation. Translation and Enlargement will come in a later pack.

Reflection

This means sketch the "reflection" of a shape as if through a mirror. The resulting shape may be called the image.

Remember that a reflection is as far behind the mirror as the object is in front.

Example

The diagrams show a shape and a mirror line.
Draw the reflection of each shape using the grid lines to help.
1.

2.
mirror line

\qquad

3. mirror line

4. mirror line

mirror line
5.

Exercise 3

1. Draw the reflection of the shapes in the mirror. Draw the shapes on squared paper, then their reflections.
a)

mirror
b)

c)

d)
mirror
Shape

e)

f)

Shape

ROTATION

You may also be asked to rotate a shape through $90^{\circ}, 180^{\circ}$ etc about some given point. Tracing paper can be helpful here.

Example 1

Before Fig (i)

After Fig (ii)

Rotate $\triangle \mathrm{ABC} 90^{\circ}$ clockwise about O .
You may like to trace fig (i). Put a pin through tracing paper and your original drawing at O and then spin the tracing paper 90°.

Example 2

Rotate \triangle PQR 180° about O. It can save space to draw the "before" and "after" positions on the same diagram.

Exercise 4

1. Rotate $\Delta x y z$ through 90° anticlockwise about O .

2. Repeat for a clockwise rotation of 90° about O .
3. Repeat for a rotation of 180° about O .
4. Rotate square ABCD through 90° clockwise about O .

5. Rotate square ABCD through 90° clockwise about \mathbf{D}.

ANSWERS

Exercise 1

1.

Exercise 2

1. $\mathrm{X}, \mathrm{Z}, \mathrm{S}$ and H have rotational symmetry.

order 2

order 2

order 2

The letters look the same when turned through 180°, and so, have rotational symmetry order 2.
A, C, E, W and T have to be turned around completely, before they look the same, and so, have no rotational symmetry.
2.
(i)
order 2
(v)

(ii)

(vi)

(iii)

(iv)

(viii)

Exercise 3

1. (Draw question and answer on SQUARED paper.)

e)

f)
Shape

Image

Exercise 4

