

SYMMETRY

There are two kinds of symmetry:

- a) reflective symmetry
- b) rotational symmetry

a) Reflective Symmetry

A shape which can be divided by a straight line, so that each part is the mirror image of the other has reflective symmetry.

It is easy to tell if a shape has this type of symmetry if you think of folding the shape as you would a piece of paper.

You are often asked how many lines of symmetry a given shape has.

Examples:

Isosceles Triangle

2 lines of symmetry

Square

4 lines of symmetry

Circle

Infinite number of lines of symmetry

BUT

1 line of symmetry Also, there are many shapes which have <u>no</u> reflective symmetry.

Exercise 1

1. Look at the following letters and if there are any lines of symmetry draw them in.

b) Rotational Symmetry

A figure which looks the same after it has been turned through an angle about some point is said to have rotational symmetry.

Example 1

Example 2

The figure will have a definite centre. Call it O. Think of sticking a pin at O, and then turning the shape round a small amount at a time, so that it looks exactly the same as it did before the rotation.

The **order of symmetry** describes the number of different turns which will give the same appearance.

For example, 1 above (adding letters so that we can follow the moves) we have:

There are **3** distinct positions.

Each time we spun through an angle of 120°.

For example, 2 we can find 4 positions each time turning through

So, the shape has rotational symmetry of order 4.

So, a rule could be

"Decide the angle of the turn. Divide 360[°] by the size of the angle. This gives the order of symmetry."

If you have to turn a shape round 360° before it looks the same then it has **no** rotational symmetry.

Example

(Note: we do not say order 1!)

Many familiar shapes will have both reflective **and** rotational symmetry.

Example

Square

Rotational symmetry of order 4.

Equilateral Triangle

Rotational symmetry of order 3.

Exercise 2

- 1. Now look at the following letters, and if they have rotational symmetry, mark the centre of rotational with the letter 0, and give the order of rotational symmetry.
- 2. Sketch each of the following shapes and if they have rotational symmetry mark the centre of rotation with the letter o and give the order of rotational symmetry.
 - i) Rectangle v) Parallelogram
 - ii) Rombus vi) Kite
 - iii) Square vii) Isosceles Triangle
 - iv) Regular Hexagon vi) Circle

TRANSFORMATION GEOMETRY

When a shape has been drawn on squared paper, you may be asked to move it around the page in a variety of ways.

These are called:

- 1. Reflection
- 2. Rotation
- 3. Translation
- 4. Enlargement

In this pack, we will introduce reflection and rotation. Translation and Enlargement will come in a later pack.

Reflection

This means sketch the "reflection" of a shape as if through a mirror. The resulting shape may be called the image.

Remember that a reflection is as far behind the mirror as the object is in front.

Example

The diagrams show a shape and a mirror line.

Draw the reflection of each shape using the grid lines to help.

1.

3. mirror line

4.

Exercise 3

1. Draw the reflection of the shapes in the mirror. Draw the shapes on squared paper, then their reflections.

ROTATION

You may also be asked to rotate a shape through 90⁰, 180⁰ etc about some given point. Tracing paper can be helpful here.

Example 1

Rotate \triangle ABC 90⁰ clockwise about O.

You may like to trace fig (i). Put a pin through tracing paper and your original drawing at O and then spin the tracing paper 90°.

Example 2

Rotate Δ PQR 180^o about O. It can save space to draw the "before" and "after" positions on the same diagram.

Exercise 4

1. Rotate Δ xyz through 90^o anticlockwise about O.

- 2. Repeat for a clockwise rotation of 90⁰ about O.
- 3. Repeat for a rotation of 180^o about O.
- 4. Rotate square ABCD through 90^o clockwise about O.

5. Rotate square ABCD through 90° clockwise about **D**.

ANSWERS

Exercise 1

Exercise 2

1. X, Z, S and H have rotational symmetry.

The letters look the same when turned through 180°, and so, have rotational symmetry order 2.

A, C, E, W and T have to be turned around completely, before they look the same, and so, have no rotational symmetry.

2.

Page 13 of 14

