PROPERTIES OF A CIRCLE

Useful data:

$\pi=3.142$ (3 decimal places)
Area of a circle $=\pi r^{2} \quad r=$ radius
Circumference of a circle $=\pi \mathrm{d}$ or $2 \pi \mathrm{r} \quad \mathrm{d}=$ diameter

$$
360^{\circ}=2 \pi \text { radians }
$$

Exercise 1

Find the area and circumference of a circle with radius 5 cm
Give your answers to 3 significant figures.
Take π to be 3.142.
Now check your answer.

Exercise 2

Find the diameter of a circle whose circumference is 50 cm .
Now check your answers.

Learning

The length of the arc S.

$$
S=\frac{\theta}{360} \times 2 \pi r
$$

Example 1

Find the length of the arc given below.

$S=\frac{60}{360} \times 2 \times \pi \times 7$ 360
$=\underline{60} \times 2 \times 3.142 \times 7$
360
$=\underline{2639.28}$
360
$=7.33 \mathrm{~cm}$
to 3 significant numbers

Exercise 3

Find the length of the arc given below.

Now check your answer.

The relationship between radians and degrees is as follows:

$$
\begin{array}{r}
2 \pi \text { radians }=360^{\circ} \\
\text { or } \quad \pi \text { radians }=360^{\circ}
\end{array}
$$

Where possible radians are written in terms of π.
So, for example, $90^{\circ}=\frac{\pi}{2}$ radians

$$
60^{\circ}=\frac{\pi}{3} \text { radians }
$$

Of course this isn't possible with 31° !
To find 0^{0} in radians, use:

$$
\frac{\pi}{180} \times 0
$$

To find 0 radians in degrees, use:

$$
\frac{180}{\pi} \times 0
$$

Exercise 4

Convert:
a) 50° to radians.
b) 2 radians to degrees.

Now check your answer.

ANSWERS

Exercise 1

```
Area \(=\pi r^{2} \quad=3.142 \times 5^{2} \quad(\) remember square the 5 before multiplying by \(\pi)\)
    \(=3.142 \times 25\)
    \(=78.55\)
    \(=78.6 \mathrm{~cm}^{2}\) to 3 significant figures.
Circumference \(=2 \pi r=2 \times \pi \times 5\)
    \(=2 \times 3.142 \times 5\)
    \(=31.42\)
    \(=31.4 \mathrm{~cm}\)
```


Now return to the text.

Exercise 2

Circumference $=\pi \mathrm{d}=50$
Transposing $\mathrm{d}=\frac{50}{\pi}=\frac{50}{3.142}=15.91$
$\therefore \mathrm{d}=15.9 \mathrm{~cm}$ to 3 significant figures.

Now return to the text.

Exercise 3

$$
\begin{aligned}
& S=\frac{100}{360} \times 2 \times 3.142 \times 9=\frac{5655.6}{360}=15.71 \mathrm{~cm} \\
& S=1.57 \mathrm{~cm} \text { to } 3 \text { significant figures } .
\end{aligned}
$$

Now return to the text

Exercise 4

a) $\frac{\pi}{180} \times 50=0.873$ radians to 3 significant figures
b) $\frac{180}{\pi} \times 2=114 . .6$ degrees to 1 decimal place

