EQUATION OF A CIRCLE (COMPLETING THE SQUARE)

Unfortunately, you may not always be given the equation of the circle in the form $(x-\mathrm{a})^{2}+(y-\mathrm{b})^{2}=\mathrm{r}^{2}$. They can be written by using a method called completing the square.

The process for this is quite mechanical and is as follows:
For example, complete the square of $x^{2}+2 x$

Check this $(x+1)^{2}=x^{2}+2 x+1$ so we have +1 too much so this needs to be taken off
So

$$
x^{2}+2 x=(x+1)^{2}-1
$$

Example 1

Expand the bracket $(x+2)^{2}=x^{2}+4 x+4$
We want $x^{2}+4 x+1$ so we need to subtract 3
So $x^{2}+4 x+1=(x+2)^{2}-3$
Note: The coefficient of the squared term must equal 1.

Example 2

$$
2 y^{2}+8 y+4
$$

This needs to be written $2\left(y^{2}+4 y+2\right)$

$$
\underset{(y+2)^{2}}{\downarrow} \frac{1}{2} \text { coefficient of } y
$$

Although we have left out the multiplying factor 2 we must remember to replace it later.
$(y+2)^{2}=y^{2}+4 y+4$ we require $y^{2}+4 y+2$
So need to subtract 2

$$
\begin{array}{cc}
& y^{2}+4 y+2=(y+2)^{2}-2 \\
\therefore & 2\left(y^{2}+4 y+2\right)=2(y+2)^{2}-2
\end{array}
$$

Exercise 1

Complete the square for the following:
a) $x^{2}+3 x+1$
b) $2 x^{2}+3 x+5$

Now check your answer.

Now we'll look at how completing the square can be used to get equations into our standard form.

Example 3

Find the centre and radius of the equation $x^{2}+y^{2}-2 x-4 y=0$
We want to get this equation into the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

First put the x 's and y's together

$$
x^{2}-2 x+y^{2}-4 y=0
$$

Now complete the square for the x 's and then for the y's
Let's start with:

$$
x^{2}-2 x
$$

From this we get: $\quad(x-1)^{2}$
Expanding we get: $\quad(x-1)^{2}=x^{2}-2 x+1$ so I need to subtract 1
Thus:

$$
x^{2}-2 x=(x-1)^{2}-1
$$

Now

$$
y^{2}-4 y
$$

From this we get:

$$
(y-2)^{2}
$$

Expanding we get: $\quad(y-2)^{2}=y^{2}-4 y+4$ so I need to subtract 4
Thus:

$$
y^{2}-4 y=(y-2)^{2}-4
$$

So now I can write:

$$
x^{2}-2 x+y^{2}-4 y=0
$$

as

$$
(x-1)^{2}-1+(y-2)^{2}-4=0
$$

rearranging $(x-1)^{2}+(y-2)^{2}=5$
This is our standard form giving centre $(1,2)$ radius $\sqrt{5}$

Example 4

Find the centre and radius of the circle whose equation is

$$
2 x^{2}+2 y^{2}-8 x+6 y+5=0
$$

Firstly I must divide by 2 to make the coefficients of x^{2} and y^{2} unity before I complete the square

$$
x^{2}+y^{2}-4 x+3 y+\frac{5}{2}=0
$$

Collect together x 's and y 's:

$$
x^{2}-4 x+y^{2}+3 x+\frac{5}{2}=0
$$

Complete the square.
First: $\quad x^{2}-4 x$

$$
\begin{aligned}
(x-2)^{2} & =x^{2}-4 x+4 \text { so I must subtract } 4 \\
x^{2}-4 x & =(x-2)^{2}-4
\end{aligned}
$$

Now

$$
y^{2}+3 x
$$

$$
\left(y+\frac{3}{2}\right)^{2}=y^{2}+3 x+\frac{9}{4} \text { so I must subtract } \frac{9}{4}
$$

So

$$
y^{2}+3 x=\left(y+\frac{3}{2}\right)^{2}-\frac{9}{4}
$$

Therefore I can write $x^{2}+y^{2}-4 x+3 y+\frac{5}{2}=0$
as: $\quad(x-2)^{2}-4+\left(y+\frac{3}{2}\right)^{2}-\frac{9}{4}+\frac{5}{2}=0$
or: $\quad(x-2)^{2}+\left(y+\frac{3}{2}\right)^{2}-\frac{15}{4}=0$

$$
(x-2)^{2}+\left(y+\frac{3}{2}\right)^{2}=\frac{15}{4}
$$

So the circle has centre $\left(2,-\frac{3}{2}\right)$ radius $\left(\frac{15}{4}\right)^{1 / 2}$

Exercise 2

Find the centre and radius of the circle whose equation is

$$
x^{2}+y^{2}-8 x-4 y=0
$$

Now check your answers.

Exercise 3

Find the centre and radius of the circle whose equation is

$$
x^{2}+y^{2}+3 x+2 y+1=0
$$

Now check your answers.

Exercise 4

Find the centre and radius of the circle whose equation is

$$
2 x^{2}+2 y^{2}+6 x+4 y+4=0
$$

Now check your answers.

Exercise 5

Find the centre and radius of the circle whose equation is

$$
3 x^{2}+3 y^{2}+2 x=0
$$

Now check your answers.

ANSWERS

Exercise 1

a) $x^{2}+3 x+1 \quad$ The coefficient of x^{2} is unity so we can complete the
 square immediately.
$\left(x+\frac{3}{2}\right)^{2}=x^{2}+3 x+\frac{9}{4} \quad I$ want $x^{2}+3 x+1$ so I need to subtract $\frac{5}{4}$
$\therefore x^{2}+3 x+1=\left(x+\frac{3}{2}\right)^{2}-\frac{5}{4}$
b) $2 x^{2}+3 x+5 \quad$ I need to factorise by 2 to get the coefficient of x^{2} unity.
$2\left(x^{2}+\frac{3}{2} x+\frac{5}{2}\right)$
Just consider $\left(x^{2}+\frac{3}{2} x+\frac{5}{2}\right)$

$\left(x+\frac{3}{4}\right)^{2}=x^{2}+\frac{3}{2} x+\frac{9}{16} \quad$ but I want $x^{2}+\frac{3}{2 x}+\frac{5}{2}$
So need to add $\frac{31}{16}$
So $2\left(x^{2}+\frac{3}{2} x+\frac{5}{2}\right)=2\left\{\left(x+\frac{3}{4}\right)^{2}+\frac{31}{16}\right\}$
Now return to the text.

Exercise 2

The correct answer is centre $(4,2)$ radius $\sqrt{20}$ Look at solution below.
$x^{2}+y^{2}-8 x-4 y=0$
$x^{2}-8 x+y^{2}-4 y=0 \quad$ collecting x 's and y^{\prime} s

$x^{2}-8 x$	$y^{2}-4 y$
$(x-4)^{2}=x^{2}-8 x+16$	$(y-2)^{2}=y^{2}-4 y+4$

Completing the square
$\therefore x^{2}-8 x=(x-4)^{2}-16 \quad \therefore y^{2}-4 y=(y-2)^{2}-4$

$$
\text { So } x^{2}+y^{2}-8 x-4 y=0
$$

Can be written $(x-4)^{2}-16+(y-2)^{2}-4=0$

Or

$$
\begin{array}{r}
(x-4)^{2}+(y-2)^{2}-20=0 \\
(x-4)^{2}+(y-2)^{2}=0
\end{array}
$$

centre $(4,2)$ radius $\sqrt{20}$
Now return to the text.

Exercise 3

The correct answer is centre $\left(\frac{-3}{2},-1\right)$ radius $\frac{3}{2}$ Look at the solution below.

$$
\begin{gathered}
x^{2}+y^{2}+3 x+2 y+1=0 \\
x^{2}+3 x+y^{2}+2 y+1=0 \\
\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}+(y+1)^{2}-1+1=0 \text { completing the square }
\end{gathered}
$$

$$
\text { So }\left(x+\frac{3}{2}\right)^{2}+(y+1)^{2}-\frac{9}{4}-1+1=0
$$

$$
\left(x+\frac{3}{2}\right)^{2}+(y+1)^{2}-\frac{9}{4}=0
$$

$$
\text { or }\left(x+\frac{3}{2}\right)^{2}+(y+1)^{2}=\frac{9}{4}
$$

so centre $\left(\frac{-3}{2},-1\right)$ radius $\frac{3}{2}$
Now return to the text.

Exercise 4

First divide through by 2. If you didn't do this do the activity again before reading on.

$$
\begin{gathered}
x^{2}+y^{2}+3 x+2 y+2=0 \\
x^{2}+3 x+\frac{y^{2}+2 y+2=0 \quad \text { collecting } x \text { 's and } y \text { 's }}{\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}+(y+1)^{2}-1+2=0 \text { completing the square }} \begin{aligned}
\left(x+\frac{3}{2}\right)^{2}+(y+1)^{2}-1-\frac{9}{4}+2 & =0 \\
\left(x+\frac{3}{2}\right)^{2}+(y+1)^{2}-\frac{5}{4} & =0 \\
\left(x+\frac{3}{2}\right)^{2}+(y+1)^{2} & =\frac{5}{4}
\end{aligned}
\end{gathered}
$$

$$
\text { Centre }\left(\frac{-3}{2},-1\right) \text { radius }\left(\frac{5}{4}\right)^{1 / 2}
$$

Now return to the text.

Exercise 5

This one may seem harder from the previous ones. In fact, because there is no y term life is easier!
First divide through by 3

$$
x^{2}+y^{2}+\frac{2 x}{3}=0
$$

Collect the x 's together

$$
x^{2}+\frac{2 x}{3}+y^{2}=0
$$

Complete this square. (There is no need for y)

$$
\begin{gathered}
\left(x+\frac{1}{3}\right)^{2}-\frac{1}{9}+y^{2}=0 \\
\left(x+\frac{1}{3}\right)^{2}+y^{2}=\frac{1}{9}
\end{gathered}
$$

So centre $\left(-\frac{1}{3}, 0\right)$ radius $\frac{1}{3}$

