

EQUATION OF A CIRCLE (COMPLETING THE SQUARE)

Unfortunately, you may not always be given the equation of the circle in the form $(x-a)^2 + (y-b)^2 = r^2$. They can be written by using a method called completing the square.

The process for this is guite mechanical and is as follows:

For example, complete the square of $x^2 + 2x$

Check this $(x + 1)^2 = x^2 + 2x + 1$ so we have + 1 too much so this needs to be taken off

So
$$x^2 + 2x = (x + 1)^2 - 1$$

Example 1

$$x^{2} + 4x + 1$$

$$(x + 2)^{2}$$

$$(\frac{1}{2} \text{ the coefficient of } x)$$
and the bracket $(x + 2)^{2} = x^{2} + 4x + 4$

Expand the bracket $(x + 2)^2 = x^2 + 4x + 4$

We want $x^2 + 4x + 1$ so we need to subtract 3

So
$$x^2 + 4x + 1 = (x + 2)^2 - 3$$

Note: The coefficient of the squared term must equal 1.

Example 2

$$2y^2 + 8y + 4$$

This needs to be written 2 ($y^2 + 4y + 2$)

$$\downarrow \qquad \qquad \frac{1}{2} \text{ coefficient of y}$$
So $(y + 2)^2$

Although we have left out the multiplying factor 2 we must remember to replace it later.

$$(y + 2)^2 = y^2 + 4y + 4$$
 we require $y^2 + 4y + 2$

So need to subtract 2

$$y^2 + 4y + 2 = (y + 2)^2 - 2$$

$$\therefore$$
 2 (y² + 4y + 2) = 2 (y + 2)² -2

Exercise 1

Complete the square for the following:

a)
$$x^2 + 3x + 1$$

b)
$$2x^2 + 3x + 5$$

Now check your answer.

Now we'll look at how completing the square can be used to get equations into our standard form.

Example 3

Find the centre and radius of the equation $x^2 + y^2 - 2x - 4y = 0$

We want to get this equation into the form

$$(x-a)^2 + (y-b)^2 = r^2$$

First put the x's and y's together

$$x^2 - 2x + y^2 - 4y = 0$$

Now complete the square for the x's and then for the y's

Let's start with: $x^2 - 2x$

From this we get: $(x-1)^2$

Expanding we get: $(x-1)^2 = x^2 - 2x + 1$ so I need to subtract 1

Thus: $x^2 - 2x = (x - 1)^2 - 1$

Now $y^2 - 4y$

From this we get: $(y-2)^2$

Expanding we get: $(y-2)^2 = y^2 - 4y + 4$ so I need to subtract 4

Thus: $y^2 - 4y = (y - 2)^2 - 4$

So now I can write:

$$x^2 - 2x + y^2 - 4y = 0$$

as
$$(x-1)^2-1+(y-2)^2-4=0$$

rearranging
$$(x - 1)^2 + (y - 2)^2 = 5$$

This is our standard form giving centre (1, 2) radius $\sqrt{5}$

Example 4

Find the centre and radius of the circle whose equation is

$$2x^2 + 2y^2 - 8x + 6y + 5 = 0$$

Firstly I must divide by 2 to make the coefficients of x^2 and y^2 unity before I complete the square

$$x^2 + y^2 - 4x + 3y + \frac{5}{2} = 0$$

Collect together x's and y's:

$$x^2 - 4x + y^2 + 3x + \frac{5}{2} = 0$$

Complete the square.

First:
$$x^2 - 4x$$

$$(x-2)^2 = x^2 - 4x + 4$$
 so I must subtract 4

$$x^2 - 4x = (x - 2)^2 - 4$$

Now $y^2 + 3x$

$$(y + \frac{3}{2})^2 = y^2 + 3x + \frac{9}{4}$$
 so I must subtract $\frac{9}{4}$

So
$$y^2 + 3x = (y + \frac{3}{2})^2 - \frac{9}{4}$$

Therefore I can write $x^2 + y^2 - 4x + 3y + \frac{5}{2} = 0$

as:
$$(x-2)^2 - 4 + (y + \frac{3}{2})^2 - \frac{9}{4} + \frac{5}{2} = 0$$

or:
$$(x-2)^2 + (y + \frac{3}{2})^2 - \frac{15}{4} = 0$$

$$(x-2)^2 + (y + \frac{3}{2})^2 = \frac{15}{4}$$

So the circle has centre (2, - $\frac{3}{2}$) radius ($\frac{15}{4}$)^{1/2}

Exercise 2

Find the centre and radius of the circle whose equation is

$$x^2 + y^2 - 8x - 4y = 0$$

Now check your answers.

Exercise 3

Find the centre and radius of the circle whose equation is

$$x^2 + y^2 + 3x + 2y + 1 = 0$$

Now check your answers.

Exercise 4

Find the centre and radius of the circle whose equation is

$$2x^2 + 2y^2 + 6x + 4y + 4 = 0$$

Now check your answers.

Exercise 5

Find the centre and radius of the circle whose equation is

$$3x^2 + 3y^2 + 2x = 0$$

Now check your answers.

ANSWERS

Exercise 1

a) $x^2 + 3x + 1$ $(x + \frac{3}{2})^2$

The coefficient of x^2 is unity so we can complete the square immediately.

$$(x + \frac{3}{2})^2 = x^2 + 3x + \frac{9}{4}$$
 I want $x^2 + 3x + 1$ so I need to subtract $\frac{5}{4}$

$$\therefore x^2 + 3x + 1 = (x + \frac{3}{2})^2 - \frac{5}{4}$$

b) $2x^2 + 3x + 5$ I need to factorise by 2 to get the coefficient of x^2 unity.

$$2(x^2 + \frac{3}{2}x + \frac{5}{2})$$

Just consider $(x^2 + \frac{3}{2}x + \frac{5}{2})$

$$\int_{(x+\frac{3}{4})^2}$$

$$(x + \frac{3}{4})^2 = x^2 + \frac{3}{2}x + \frac{9}{16}$$
 but I want $x^2 + \frac{3}{2x} + \frac{5}{2}$

So need to add $\frac{31}{16}$

So 2
$$(x^2 + \frac{3}{2}x + \frac{5}{2}) = 2\{(x + \frac{3}{4})^2 + \frac{31}{16}\}$$

Now return to the text.

Exercise 2

The correct answer is centre (4, 2) radius $\sqrt{20}$ Look at solution below.

$$x^2 + y^2 - 8x - 4y = 0$$

$$x^2 - 8x + y^2 - 4y = 0$$
 collecting x's and y's

$$x^{2} - 8x$$

$$(x - 4)^{2} = x^{2} - 8x + 16$$

$$(y - 2)^{2} = y^{2} - 4y + 4$$

$$Completing the square$$

$$\therefore x^{2} - 8x = (x - 4)^{2} - 16$$

$$\therefore y^{2} - 4y = (y - 2)^{2} - 4$$

$$\therefore x^2 - 8x = (x - 4)^2 - 16 \qquad \therefore y^2 - 4y = (y - 2)^2 - 4$$

So
$$x^2 + y^2 - 8x - 4y = 0$$

Can be written $(x-4)^2 - 16 + (y-2)^2 - 4 = 0$

Or
$$(x-4)^2 + (y-2)^2 - 20 = 0$$

 $(x-4)^2 + (y-2)^2 = 0$

centre (4, 2) radius $\sqrt{20}$

Now return to the text.

Exercise 3

The correct answer is centre $(\frac{-3}{2}, -1)$ radius $\frac{3}{2}$ Look at the solution below.

$$x^2 + y^2 + 3x + 2y + 1 = 0$$

$$x^2 + 3x + y^2 + 2y + 1 = 0$$

$$(x + \frac{3}{2})^2 - \frac{9}{4} + (y + 1)^2 - 1 + 1 = 0$$
 completing the square

So
$$(x + \frac{3}{2})^2 + (y + 1)^2 - \frac{9}{4} - 1 + 1 = 0$$

$$(x + \frac{3}{2})^2 + (y + 1)^2 - \frac{9}{4} = 0$$

or
$$(x + \frac{3}{2})^2 + (y + 1)^2 = \frac{9}{4}$$

so centre $(\frac{-3}{2}, -1)$ radius $\frac{3}{2}$

Now return to the text.

Exercise 4

First divide through by 2. If you didn't do this do the activity again before reading on.

$$x^2 + y^2 + 3x + 2y + 2 = 0$$

$$x^{2} + 3x + y^{2} + 2y + 2 = 0$$
 collecting x's and y's

$$(x + \frac{3}{2})^2 - \frac{9}{4} + (y + 1)^2 - 1 + 2 = 0$$
 completing the square

$$(x + \frac{3}{2})^2 + (y + 1)^2 - 1 - \frac{9}{4} + 2 = 0$$

$$(x + \frac{3}{2})^2 + (y + 1)^2 - \frac{5}{4} = 0$$

$$(x + \frac{3}{2})^2 + (y + 1)^2 = \frac{5}{4}$$

Centre
$$(\frac{-3}{2}, -1)$$
 radius $(\frac{5}{4})^{1/2}$

Now return to the text.

Exercise 5

This one may seem harder from the previous ones. In fact, because there is no y term life is easier!

First divide through by 3

$$x^2 + y^2 + \frac{2x}{3} = 0$$

Collect the x's together

$$x^2 + \frac{2x}{3} + y^2 = 0$$

Complete this square. (There is no need for y)

$$(x + \frac{1}{3})^2 - \frac{1}{9} + y^2 = 0$$

$$(x + \frac{1}{3})^2 + y^2 = \frac{1}{9}$$

So centre $(-\frac{1}{3}, 0)$ radius $\frac{1}{3}$