EQUATION OF A CIRCLE (CENTRE A, B)

A circle can have different centres as well as different radii. Let's now consider a more general equation for a circle with centre (a, b) and radius r

Exercise 1

Consider the diagram above. In terms of $\mathrm{a}, x, \mathrm{~b}$ and y what are the distances CN and PN.
Now check your answers.

Exercise 2

In the triangle below (which is taken from the previous diagram) find, using Pythagoras' Theorem, a relationship between r^{2}, x, y, a and b .

Now check your answer.

Now we have an equation for a circle with centre (a, b) and radius r.
So, comparing our standard equation to a given equation, we can determine the centre and radius of the circle.

Example

Find the centre and radius of the circle with equation.

$$
(x-3)^{2}+(y-4)^{2}=25
$$

Compare with the standard form

$$
\begin{aligned}
& (x-a)^{2}+(y-b)^{2}=r^{2} \\
& (x-3)^{2}+(y-4)^{2}=25
\end{aligned}
$$

Can you see that $a=3, b=4$ and $r=5$.
So this circle has centre $(3,4)$ radius 5 .

Exercise 3

Find the centres and radii of the circle with equations:
a) $(x-1)^{2}+(y-3)^{2}=16$
b) $\quad(x=3)^{2}+(y-2)^{2}=49$

Now check your answers.

Exercise 4

Write down the equation of the circles with the following centres and radii:
a) Centre $(1,2)$ radius 2
b) Centre (-1, 3) radius 4
c) Centre $(-4,-3)$
radius $\sqrt{3}$
Now check your answers.

Exercise 5

Find the centres and radii of the following circles:
a) $(2 x-4)^{2}+(2 y-2)^{2}=25$
b) $(3 x-1)^{2}+(3 y+4)^{2}=49$

Now check your answers.

Exercise 6

Find the centres and radii of the following circles:
a) $(5 x+10)^{2}+(5 y-5)^{2}=125$
b) $\quad(3 x-1)^{2}+(2 y+4)^{2}=16 \quad$ (Be careful!)

Now check your answers.

We've already discovered that the coefficients of x^{2} and y^{2} must be the same for an equation to be that of a circle. One other piece of information is available to us to give us a clue as to whether the equation is a circle or not.

Consider $\quad(x-a)^{2}+(y-b)^{2}=\mathrm{r}^{2}$
This is the equation of a circle centre (a, b) radius r.
Expands the brackets:
or

$$
\begin{aligned}
& x^{2}-2 a x+a^{2}+y^{2}-2 b y+b^{2}=r \\
& x^{2}+y^{2}-2 a x-2 b y+a^{2}+b^{2}=r^{2}
\end{aligned}
$$

The other thing apart from the coefficients of x^{2} and y^{2} being equal, that gives us a clue is that there is no xy term. So

$$
x^{2}+y^{2}+3 x y+6=30 \quad \text { cannot be a circle }
$$

where as

$$
2 x^{2}+2 y^{2}+4 x+2 y=60 \quad \text { is a circle }
$$

You may see the equation of a circle written in this way so its best to know it is a circle before you start.
To summarise.
For an equation to be a circle it must have the following:
a) coefficients of x^{2} and y^{2} which are the same;
b) there is no $x y$ term;
c) $\quad r^{2}$ must be positive.

Point c) is because you can't find the square root of a negative number.

Exercise 7

For each of the following equations state whether or not it is a circle and if not why not.
a) $(x-1)^{2}+(y-2)^{2}=27$
b) $(2 x+3)^{2}+(y-1)^{2}=16$
c) $2 x^{2}+2 y^{2}+6 x+5 y=42$
d) $3 x^{2}+3 y^{2}+6 x y+4 x+4 y=17$
e) $x^{2}+y^{2}=-30$

Now check your answers.

ANSWERS

Exercise 1

CN is $x-\mathrm{a}$ and PN is $y-\mathrm{b}$ because

Now return to the text.

Exercise 2

$$
\mathrm{r}^{2}=(x-\mathrm{a})^{2}+(y-\mathrm{b})^{2}
$$

If you expanded the right side to get

$$
\mathrm{r}^{2}=x^{2}+y^{2}-2 \mathrm{a} x-2 \mathrm{a} y+\mathrm{a}^{2}+\mathrm{b}^{2}
$$

fine, but its usual to leave the equation as:

$$
\begin{aligned}
& r^{2}=(x-a)^{2}+(y-b)^{2} \\
& (P C)^{2}=(C N)^{2}+(P N)^{2} \\
& r^{2}=(x-a)^{2}+(y-b)^{2}
\end{aligned}
$$

Now return to the text.

Exercise 3

a) Centre $(1,3) \quad$ radius 4
b) Centre $(-3,2) \quad$ radius 7

Always compare with the standard equation.
a) $(x-a)^{2}+(y-b)^{2}=r$

$$
\begin{aligned}
& (x-1)^{2}+(y-3)^{2}=16 \\
& \quad a=1 \quad b=3 \quad r=4
\end{aligned}
$$

b) $(x-a)^{2}+(y-b)^{2}=r^{2}$

$$
(x+3)^{2}+(y-2)^{2}=49
$$

$$
\mathrm{a}=3[\text { to give } x-(-3)=x+3] \quad \mathrm{b}=2 \quad \mathrm{r}=7
$$

Now return o the text

Exercise 4

a) $(x-1)^{2}+(y-2)^{2}=4 \quad \mathrm{a}=1 \quad \mathrm{~b}=2 \quad \mathrm{r}=2$
b) $(x+1)^{2}+(y-3)^{2}=16 \quad \mathrm{a}=-1 \quad \mathrm{~b}=3 \quad \mathrm{r}=4$
C) $(x+4)^{2}+(y+3)^{2}=3$

$$
a=-4 \quad b=-3 \quad r=\sqrt{3}
$$

Now return to the text.

Exercise 5

a) If you got the centre $(4,2)$ and radius 5 , hard luck. The coefficients of x^{2} and y^{2} must be unity. Take a look at the solution and try part b) before looking at the answer.
$(2 x-4)^{2}+(2 y-2)^{2}=25$
To make the coefficients of x^{2} and y^{2} unity we must factorise both brackets by 2 , but remember, when the 2 comes outside the bracket it will be 2^{2} because of the squared bracket.

So: $\quad 2^{2}(x-2)^{2}+2^{2}(y-1)^{2}=25$

$$
4(x-2)^{2}+4(y-1)^{2}=25
$$

$(x-2)^{2}+(y-1)^{2}=\frac{25}{4}$ divide through by 4

The equation is now our standard form, So:
Centre $(2,1)$ radius $\frac{5}{2}$
b) The correct answer is: centre $\left\{\frac{1}{3},-\frac{4}{3}\right\}$ radius $\frac{7}{3}$

$$
(3 x-1)^{2}+(3 y+4)^{2}=49
$$

Factorise each bracket by 3 to get the coefficients equal to 1

$$
\begin{aligned}
3^{2}\left[x-\frac{1}{3}\right]^{2}+3^{2}\left[y+\frac{4}{3}\right]^{2} & =49 \\
& 9\left[x-\frac{1}{3}\right]^{2}+9\left[y+\frac{4}{3}\right]^{2}=49 \\
{\left[x-\frac{1}{3}\right]^{2}+\left[y+\frac{4}{3}\right]^{2}=} & 49
\end{aligned}
$$

Now it's the standard form so:
Centre $\left[\frac{1}{3},-\frac{4}{3}\right]$ radius $\frac{7}{3}$
Please note that, as before, the coefficients of x and y in the brackets must be the same.
Now return to the text.

Exercise 6

a) $(5 x+10)^{2}+(5 y-5)^{2}=125$
$5^{2}(x+2)^{2}+5^{2}(y-1)^{2}=125$
$25(x+2)^{2}+25(y-1)^{2}=125$

$$
(x+2)^{2}+(y-1)^{2}=5
$$

Centre $(-2,1)$ radius $\sqrt{5}$
b) This equation is not a circle! The coefficients of x and y are not the same so the equation cannot be rearranged to give us our standard form.

Now return to the text

Exercise 7

a) It is a circle. It's of the form $(x-\mathrm{a})^{2}+(y-\mathrm{b})^{2}=\mathrm{r}^{2}$
b) It is not a circle, the coefficients of x and y are different.
c) It is a circle. It can be converted onto the form of $(x-\mathrm{a})^{2}+(y-\mathrm{b})^{2}=\mathrm{r}^{2}$
d) It is not a circle. It contains an $x y$ term.
e) It is not a circle, r^{2} is negative.

