EQUATION OF A CIRCLE (CENTRE ORIGIN)

Linear equations of the form $y=m x+c$, for example $y=2 x+1$, will always be a straight line when plotted on a graph paper. So if you see the equation $2 y=x-3$, you should realise that this is a straight line. From the equation you can also tell the gradient of the line and the point the line crosses the y axis.

Exercise 1

Tick which one of the following is not a straight line?
a) $y=3 x-2$
b) $x+y=2$
c) $x y=1$
d) $x=4 y+7$

Now check your answers

Just as a straight line can be described by an equation so can curves. The circle is no exception. It has an equation which identifies it as a circle and from which we can get information about the circle.

Just as the equation $y=2 x+1$ describes a connection or link between y and x (y is always twice x add 1), so a link can be described for a circle.

Whereabouts a circle is drawn on graph paper depends on two things:
i) It's centre.
ii) It's radius.

For the time being we will only consider circles whose radius is the origin $(0,0)$.
What we must try to do is describe any point on the circumference of the circle.

Exercise 2

Let the radius be r .

Using Pythagoras' Theorem, find r in terms of x and y.
Now check your answer.
So the equation of a circle centre $(0,0)$ radius r is:

$$
x^{2}+y^{2}=r^{2}
$$

so for example the equation

$$
x^{2}+y^{2}=25
$$

is a circle centre $(0,0)$ radius $5\left(r^{2}\right.$ is 25 so $\left.r=5\right)$

Exercise 3

Find the radii of the following circles.
a) $x^{2}+y^{2}=16$
b) $x^{2}+y^{2}=1$
c) $x^{2}+y^{2}=2$
d) $2 x^{2}+2 y^{2}=50$

Now check your answers.

The last part of Exercise 3 showed that the equation of a circle must be rearranged sometimes to get the standard form $x^{2}+y^{2}=r^{2}$, just as we need to rearrange $2 y=4 x+1$ to get the standard form $y=\mathrm{m} x+\mathrm{c}$.

Please remember that at the moment we are only considering circles with centre (0,0). That was the assumption when we proved the equation in Exercise 2.

Exercise 4

Rearrange where necessary and find the radii of the following circle. One of the equations may not be that of a circle.
a) $2 x^{2}+2 y^{2}=100$
b) $x^{2}+y^{2}=49$
c) $5 x^{2}+5 y^{2}=125$
d) $2 x^{2}+3 y^{2}=30$

Now check your answers.
Part of Exercise 4 gave us some more information about the equation of a circle. We now know that the coefficients of x^{2} and y^{2} must be the same.

Exercise 5

Tick which of the following are circles:
a) $x^{2}+y^{2}=25$
b) $2 x^{2}-2 y^{2}=16$
c) $4 x^{2}+4 y^{2}=12$
d) $2 x^{2}+3 y^{2}=15$

Now check your answers.

Exercise 6

Find the co-ordinates of the points where the circle $x^{2}+y^{2}=16$ crosses the x axis.
Now check your answers.

Exercise 7

Find the co-ordinates of the points where the circle $3 x^{2}+3 y^{2}=27$ crosses the y axis.
Now check your answers.

ANSWERS

Exercise 1

(c) is the correct answer because it is not a straight line. No way can $x y=1$ be re-arranged in the form $y=\mathrm{m} x+\mathrm{c}$
(a) is already in the form $\mathrm{y}=\mathrm{m} x+\mathrm{c}$ and, therefore, gives a straight line.
(b) $x+y+2$ can be rearranged as $y=x+2$ which is in $y=\mathrm{m} x+\mathrm{c}$ form. Therefore $x+y=2$ also gives a straight line.
(d) $x=4 y+7$ can be rearranged as $\mathrm{y}=\frac{1}{4 x}-\frac{7}{4}$ again this is in $y=\mathrm{m} x+\mathrm{c}$ form and, therefore, $x=4 y+7$ gives a straight line.

The steps in the last one are: $\quad x=4 y+7$

$$
\begin{aligned}
& x-7=4 y \\
& \frac{x}{4} \quad-\frac{7}{4}=y \\
& \therefore \quad y=\frac{x}{4}-\frac{7}{4}
\end{aligned}
$$

Now return to the text.

Exercise 2

Hope you got $x^{2}+y^{2}=r^{2}$ (or $r=\sqrt{x}^{2}+y^{2}$) because:

by Pythagoras $x^{2}+y^{2}=r^{2}$
Now return to the text.

Exercise 3

a) radius $=4 \quad r^{2}=16 \quad$ so $r=4$
b) $\begin{aligned} & \text { radius }=1 \quad r^{2}=1 \quad \text { so } r=1\end{aligned}$
c) radius $=\sqrt{2} \quad r^{2}=2 \quad$ so $r=\sqrt{2}$
d) radius $=5$ If you put $\sqrt{50}$ you can understand why!

The equation has x^{2} and y^{2} with coefficients of 1 so $2 x^{2}+2 y^{2}=50$ must be rearranged so that the coefficients of x^{2} and y^{2} are unity.

Therefore: $\quad 2 x^{2}+2 y=50$
becomes: $\quad x^{2}+y^{2}=25$ (divide through by 2)
and:

$$
r^{2}=25 \text { so } r=5
$$

Now return to the text.

Exercise 4

a) radius $=\sqrt{50} \quad 2 x^{2}+2 y^{2}=100$

$$
x^{2}+y^{2}=\underline{50}(\div b y 2)
$$

b) radius = 7 no rearranging necessary
c) \quad radius $=5$

$$
\begin{aligned}
5 x^{2}+5 y^{2} & =125 \\
x^{2}+y^{2} & =25(\div 5)
\end{aligned}
$$

d) This is not a circle. It cannot be rearranged to give the standard form, (what do we divide by, 2 or 3?)

Now return to the text.

Exercise 5

a) and c) are both circles because they can be rearranged where necessary in the form of $x^{2}+y^{2}=r^{2}$.
b) is not a circle because the coefficients of x^{2} and y^{2} are not the same.

Now return to the text.

Exercise 6

The circle crosses the x axis at $(4,0)$ and $(-4,0)$ because the radius of the circle is 4 and its centre is $(0$, 0) so

Now return to the text.

Exercise 7

The circle crosses the y axis at $(0,3)$ and $(0,-3)$. Remember the equation has to be rearranged to give $x^{2}+y^{2}=9$.

So the radius is 3 and the centre is $(0,0)$.

