CONGRUENT TRIANGLES

Congruent triangles are triangles that are exactly alike in every aspect. There are FOUR sets of rules which can be applied to congruent triangles.

1. Triangles are congruent if 3 sides in one triangle are equal to the corresponding sides in another triangle.

2. Triangles are congruent if two sides and the angle between them in one triangle are equal to two sides and angle between them the in the other triangle.

3. Triangles are congruent if one side and two angles in one triangle are equal to one side and two angles in the same position in the other direction.

OR

OR

OR

AAS
(Angle - Angle- Corresponding Side)
4. Triangles are congruent if they are right-angled and the hypotenuse in one equals the hypotenuse in the other, and one side equals the corresponding side in the other.

(Right-Angle - Hypotenuse - Corresponding Side)

Exercise 1

Look at these and identify which are congruent pairs. Answer yes or no.
1.

YES or NO
2.

YES or NO

3.

YES or NO

4.

YES or NO
5.

YES or NO

6.

YES or NO

7.

YES or NO
8.

YES or NO

SIMILAR TRIANGLES

Why were number 6 and number 8 in the pervious example NOT congruent?
You will notice that the angles are equal, but in 6 the measurements of the sides are not equal, they are twice as big. We can draw many different sized triangles with the same angles, but having different sizes.
The important point to remember in similar triangles is that the angles are the same and the corresponding sides are in the same ratio.

These triangles are similar. The sides are in the ratio $2: 4$ or $1: 2$.
$A: B=1: 2$
$C: D=1: 2$

4

$E: F=2: 6$
or 4:12or
3:9
$E: F=1: 3$
$1: 3$
$1: 3$
$F: G=6: 18$ or $12: 36$ or $9: 27$
$F: G=1: 3$
$1: 3$
$1: 3$
NB It does not matter which pair of sides you compare so long as they are CORRESPONDING sides.

Calculating Lengths of Sides of Similar Triangles

In this type of question, you will be asked to find the missing side. So first establish whether or not they are similar.

Example 1

Find QR

Triangle ABC and triangle PQR are similar, compare corresponding sides.
Sides which correspond are: A and PQ

$$
A=P
$$

$$
\begin{array}{ll}
\mathrm{BC} \text { and } \mathrm{QR} & \mathrm{~B}=\mathrm{Q} \\
\mathrm{AC} \text { and } \mathrm{PR} & \mathrm{C}=\mathrm{R}
\end{array}
$$

We have a measurement for AB and BC ; so we can use an equation to find QR .

$$
\frac{A B}{P Q}=\frac{B C}{Q R}
$$

Now substitute the values you are given

$$
\frac{4}{8}=\frac{6}{Q R}
$$

Now cross multiply to give

$$
\begin{aligned}
4 \mathrm{QR} & =6 \times 8=48 \\
\mathrm{QR} & =\frac{48}{4} \\
\mathrm{QR} & =12
\end{aligned}
$$

Example 2

Find BC

Are these triangles SIMILAR?

In triangle $A B C$ we have :
And in triangle PQR we have:
$\mathrm{C}=40$ (Angles in a triangle equal 180°)
Hence: $\quad A=P$

$$
\begin{aligned}
& B=Q \\
& C=R
\end{aligned}
$$

Thus, triangles $A B C$ are similar PQR
[NOTE: Write the equal angles underneath each other.]

$$
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}
$$

or

$$
\frac{9}{3}=\frac{B C}{5}
$$

Whence $B C=\frac{9 \times 5}{3}=\underline{15}$

Example 3

Find BC

In triangles $A D E$ and $A B C$ we have:

$$
\begin{aligned}
& A=A \text { (common) } \\
& D=B \text { (corresponding angles) } \\
& E=C \text { (corresponding angles) }
\end{aligned}
$$

Thus, triangles ADE are similar ABC
$\frac{A D}{A B}=\frac{D E}{B C}(N B A B=2+1=3)$
or

$$
\frac{2}{3}=\frac{5}{B C}
$$

Whence $2 B C=15$

$$
\begin{aligned}
\mathrm{BC} & =\frac{15}{2} \\
& =7.5
\end{aligned}
$$

Example 4

Find OZ

[NOTE: the parallel lines]
In triangles WOX and ZOY we have:

$$
\begin{aligned}
& \mathrm{O}=\mathrm{O} \text { (vert. opp. angles) } \\
& \mathrm{W}=\mathrm{Y} \text { (alt. angles) } \\
& \\
& \mathrm{X}=\mathrm{Z} \text { (third angles of triangles) }
\end{aligned}
$$

Hence, triangles OWX are similar to OYZ.

$$
\begin{aligned}
& \frac{O X}{O Z}=\frac{W X}{Y X} \\
& \frac{2}{O Z}=\frac{3}{5}
\end{aligned}
$$

or

$$
\begin{aligned}
3 O Z & =10 \\
O Z & =\frac{10}{3}=3 \frac{1}{3} \mathrm{~cm}
\end{aligned}
$$

Exercise 2

First identify triangles as similar. Then find the missing measurement as before.

1. Find PQ

2. Find BC

3. Find $Q R$

4. Find BC

5. Find $A B$

Areas of similar triangles

As already stated, the ratio of the areas of similar shapes is equal to the ratio of the squares of the corresponding sides.

So if you have 2 sides in the ratio $1: 3$. The ratio of the areas will be

$$
\begin{gathered}
1^{2}: 2^{2} \\
1: 9
\end{gathered}
$$

Example 1

Sides 2:3	Sides 3:10
Areas $2^{2}: 3^{2}$	Areas $3^{2}: 10^{2}$
$4: 9$	$9: 100$

Ratio of sides is $3: 2$
Ratio of areas is $3^{2}: 2^{2}$

$$
=9: 4
$$

Example 2

Ratio of sides is $7: 4$
Ratio of areas is $7^{2}: 4^{2}$

$$
\text { = } 49: 16
$$

Example 3

The triangles are similar (3 angles same). You are asked to find the area of triangle ABC. First- compare corresponding sides.

$$
\begin{array}{ll}
& A B: X Y \\
\text { Substitute } & 2: 3 \\
\text { Ratio of area } & 2^{2}: 3^{2} \\
& 4: 9 \\
& \frac{4}{9}=\frac{\text { Area of trianlge } \mathrm{ABC}}{18 \text { (Area of trianlge } \mathrm{XYZ})}
\end{array}
$$

Cross multiply $18 \times 4=$ Area of $A B C \times 9$

$$
\frac{18 \times 4}{9}=\text { Area of } A B C
$$

$$
8=\text { Area of } A B C
$$

As you know area is measured in square units so the area $=8 \mathrm{~cm}^{2}$.

Example 4

The triangles are similar:-
Find QR

Learning

Development

Ratio of sides 8: QR
Ratio of areas $8^{2}: \mathrm{QR}^{2}$
64: QR^{2}

$$
\frac{64}{Q^{2}}=\frac{36}{9}
$$

Cross multiply $9 \times 64=36 \times$ QR 2

$$
\frac{9 \times 64}{36}=\mathrm{QR}^{2}
$$

$16=\mathrm{QR}^{2}$

$$
\begin{aligned}
& \sqrt{16}=Q R=4 \\
& Q R=4
\end{aligned}
$$

Exercise 3

1. Find area of PQR

2. Find area of PQR

3. Find area of QR

4. Find area of $P Q$

5. Find area of $P Q$

Comparing Areas of Triangles

You have been shown one way of comparing areas, using similar triangles.
Another method, which we shall call the same height method, is now given.
If the triangles are not similar but have the same height the following method must be used.
NOTE- You will NOT have to work out the actual values of sides and area - your answers will always be in the form of a ratio. Take care when labelling the known sides.

Triangle ABC and triangle ABD have the same height.

Example 1

Compare the areas of triangle $A B C$ and $A C D$ in the diagram below:

Area of ABC 0.5 base \times perp. height
Area of ACD 0.5 base \times perp. height

$$
=\frac{2}{3}
$$

Answer: 2 : 3

Example 2

Compare triangle ABC and triangle ABD.

$\underline{\text { Area of } A B C}=\underline{0.5 \text { base } \times \text { perp. height }}$
Area of $A B D=0.5$ base \times perp. height

$$
=\frac{4}{7} \quad(\text { base } 4+3=7)
$$

Answer: 4:7

Exercise 4

1.

$\frac{\text { Triangle } A B C}{\text { Triangle } A B D^{2}}$
2.

Triangle ABD
Triangle BCD

ANSWERS

Exercise 1

1. Yes
2. No
3. Yes
4. Yes
5. Yes
6. No
7. Yes
8. No

Exercise 2

1. $P Q=21$
2. $B C=15$
3. $\mathrm{QR}=1.5$
4. $B C=6 \mathrm{~cm}$
5. $\mathrm{AB}=8$

Exercise 3

1. $P Q R=3 \mathrm{~cm}^{2}$ 2. $P Q R=63 \mathrm{~cm}^{2}$
2. $Q R=14 \mathrm{~cm}$ 4. $P Q=8 \mathrm{~cm}$
3. $\mathrm{PQR}=27 \mathrm{~cm}^{2}$

Exercise 4

1. $\frac{\text { Area of } A B C}{\text { Area of } A B D}=\frac{2}{5}$
2. $\frac{\text { Area of } \mathrm{ADB}}{\text { Area of } \mathrm{BCD}}=\frac{1}{4}$
