CIRCLES

Look at these diagrams, then at the list below.

Words you will use and explanations of these words:
Arc - an Arc is a part of the circumference.
Centre - the Centre of a circle is usually marked 0 .
Chord - a Chord is a line drawn from one side of the circumference to the other.
Circle Circumference

- the Circumference is the "perimeter of a circle (that is, the distance round the circle)

Diameter - when a Chord is drawn from one side of the circumference to the other, passing through the centre. This is a special chord.
Quadrant - a Quadrant is a quarter of a circle
Radius or more than one radius = radii

- a Radius is a line drawn from the centre to the circumference.

Sector - a Sector is a part of the circle bounded by the 2 radii and an arc.
Segment - a Segment is a part of the circle bounded by a chord and an arc.
Semi-circle - is half a circle.
Here are the explanations of these words.

There are certain rules applying to circles, which must be learnt. Please read and make notes of the following.

1. If a diameter of a circle is at right-angles, to a chord then it cuts the chord, then it cuts into equal parts.
i.e. $A B=B C$

Example 1

Find the radius

$O X$ cuts $A B$ in half
$A X=3$
$B X=3$
OXB is right angled triangle. Use Pythagoras' Theorem to find OB
$\mathrm{OB}^{2}=\mathrm{OX}^{2}+\mathrm{BX}^{2}$
$\mathrm{OB}^{2}=4^{2}+3^{2}$
$\mathrm{OB}^{2}=16+9=25$
$\mathrm{OB}=5$

Example 2

Find $O Y$

First, draw in the radius as shown. As in example one, use Pythagoras' Theorem to find OB which is 5 (again 5!)

OY cuts PQ in half
$P Y=4 \mathrm{~cm}$ and $Q Y=4 \mathrm{~cm}$
0 Q is a radius
$0 Q=0 B=5 \mathrm{~cm}$
Find $0 Y$ by using Pythagoras' Theorem
$0 Q^{2}=0 Y^{2}+Y Q^{2}$
$O Y^{2}=0 Q^{2}-Y Q^{2}$
$=25-16=9$
OY = 3
2. Chords which are equal in length are the same distance from the centre of the circle.

> i.e. If $A B=C D$
> then $O X=0 Y$

3. $A B$ is a diameter. The angle in a semi-circle is a right-angle.

4. Angles subtended at the circumference by the same arc in the same segment of the circle are equal.
$\mathrm{a}^{\mathrm{o}}=\mathrm{b}^{\mathrm{o}}=\mathrm{c}^{\mathrm{o}}=\mathrm{d}^{\mathrm{o}}$

NOTE: in the diagram below, a° does not equal b° because a is pointing "upwards" and b is pointing "downwards".

Example

Find x

$x=34^{\circ}$ (angle subtended at the circumference by the same arc)
5. 0 is the centre. The angle subtended at the centre is twice the angle subtended at the circumference if not on the same arc and in the same part of the circle.

This means that $2 x^{0}=y^{-}$

Example

Find x

$x=34^{\circ}$ (Angle at the centre is twice the angle at the circumference.)
6. A four-sided figure inside a circle, as shown, with the four corners touching the circumference is called a cyclic quadrilateral.
Opposite angles of a cyclic quadrilateral add up to 180°.

Therefore,
Angles

$$
a+c=180^{\circ}
$$

And

$$
b+d=180^{\circ}
$$

Example

Find x and y

$$
\begin{aligned}
& x=110^{\circ}\left(180^{\circ}-70^{\circ}\right) \\
& y=60^{\circ}\left(180^{\circ}-120^{\circ}\right)
\end{aligned}
$$

7. The exterior angle of a cycle quadrilateral is equal to the opposite interior angle.

i.e. $x^{0}=y^{0}$

Example 1

Find X

$X=120^{\circ}$

Example 2

Find x

There are two possible methods of solving this:
a) AOCB is not a cyclic quadrilateral, because all four corners do not touch the circumference.

So, draw a line, as shown.

ABCD now a cyclic quadrilateral.

Now angle ADC $=80^{\circ}$ (angle subtended at circumference is half that at the centre)

Angle ADC + Angle $\mathrm{ABC}=180^{\circ}$. So, Angle $\mathrm{ABC}=100^{\circ}\left(180^{\circ}-80^{\circ}\right)$

OR

b) First find AOC, which is a reflex angle.

Angle AOC $=200^{\circ}$
(Angles round a point $=360^{\circ}$)
So, Angle ABC = 100°
(Angle at the centre is twice the angle at the circumference).
Both methods are acceptable. Choose the one which you feel happier working with.

MORE EXAMPLES

0 is the centre of the circle in all of the following examples.
i)

$a=36^{\circ}$ (angle at centre is twice that at the circumference).
ii)

$b=90^{\circ}-62=28^{\circ}\left(\right.$ angle in a semicircle $\left.=90^{\circ}\right)$
iii)

$\mathrm{C}=42^{\circ}$ (angles in same segment)
iv)

First find angle A0B. Angle AOB $=120^{\circ}$ (angles around a point $=360^{\circ}$). $\mathrm{d}=60^{\circ}$ (angle at centre is twice that of the circumference).
v)

$$
e=34^{\circ}(\text { Angle at centre }=\text { twice that at circumference })
$$

vi)

$\mathrm{f}=77^{\circ}$ (opposite angles in a cyclic quadrilateral)
$\mathrm{g}=93^{\circ}$ (same reason as above)
$\mathrm{h}=77^{\circ}$ (exterior angle of cyclic quadrilateral =opposite interior angle)

Exercise 1

0 is the centre of the circles in all cases.
Find the angles marked with the letters.
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

TANGENT PROPERTIES OF A CIRCLE

A tangent is a line which touches a circle at one point only.

Rules applying to tangents

1. The angle between a tangent and a radius at the point of contact which is 90°.

2. Are drawn to a circle from an external point, then two tangents are equal in length.

$A T=T B$
and $\angle \mathrm{ATO}=\angle \mathrm{BTO}$
3. The angle between the tangent and the chord equals the angle in the alternate segment. This is called the alternate segment therom.

Example 1

Find X

$X=36$ (alternate segment theorem)

Example 2

Find a, b and c .

[^0]
Exercise 2

1.

2.

3.

4.

Extra lines needed.

INTERSECTING CHORDS

The following rules must be learnt!

1. $\quad \mathrm{AX} . \mathrm{XB}=\mathrm{CX} . \mathrm{XD}$

Example

$A X . X B=C X . X D$
$2 \times 6=3 \times X D$
$\frac{12}{3}=X D$
$4=X D$
2. $A X . X B=C X . X D$

Example

Find CD

AX.XB = CX.XD
6 X $2=$ CX. 3
$12=C X$
$4=C X$
$C D=C X-D X$
$C D=4-3 C D=1$
3. $\quad C T^{2}=A T . B T$

Example 1

Find CT

$\mathrm{CT}^{2}=\mathrm{AT} \cdot \mathrm{BT}(\mathrm{AT}=5+4) \quad \mathrm{CT}^{2}=9 \times 4=36$
$C T=6$

Example 2

Find CA

Let $A B$ be X

$$
A C=5+X
$$

$C T^{2}=A C . B C$

$$
7^{2}=(5+X) 5
$$ Development

$49=25+5 X$
$49-25=5 X$
$24=5 X$
$\frac{24}{5}=X$
$4 \frac{4}{5}=X$
$C A=5+4 \frac{4}{5}=9 \frac{4}{5}$

Exercise 3

1. Find CX

2. Find $C D$

3. Find AT

4. Find BC

ANSWERS

Exercise 1

1. $a=56^{\circ}$
2. $\mathrm{b}=90^{\circ}, \mathrm{c}=58^{\circ}$
3. $d=36^{\circ}$
4. $e=130^{\circ}$
5. $f=112^{\circ}, g=76^{\circ}$
6. $\mathrm{h}=96^{\circ}, \mathrm{i}=80^{\circ}$
7. $\mathrm{j}=36^{\circ}$
8. $\mathrm{k}=40^{\circ}$
9. $\mathrm{I}=90^{\circ}$
10. $\mathrm{m}=93^{\circ}, \mathrm{n}=93^{\circ}$

Exercise 2

TANGENTS

1. $\mathrm{a}=57^{\circ}$
2. $\mathrm{b}=10^{\circ}, \mathrm{c}=90^{\circ}, \mathrm{d}=80^{\circ}$
3. $\mathrm{e}=57^{\circ}, \mathrm{f}=62^{\circ}, \mathrm{g}=61^{\circ} 4$.
$\mathrm{h}=90^{\circ}, \mathrm{i}=72^{\circ}$

Exercise 3

INTERSECTING CHORDS

1. $C X=4 \mathrm{~cm}$
2. $\mathrm{CD}=3 \mathrm{~cm}$
3. $A T=8 \mathrm{~cm}$
4. $\mathrm{CB}=10.5 \mathrm{~cm}$

[^0]: $\mathrm{a}=46^{\circ}$ (alternate segment theorem)
 $b=84^{\circ}$ (angles on a straight line add up to $\left.180^{\circ}\right)\left(180^{\circ}-50^{\circ}-46^{\circ}=84^{\circ}\right)$
 c $=84^{\circ}$ (alternate segment theorem)

