CIRCLES, SECTORS AND RADIANS

SECTORS

The non-shaded area of the circle shown below is called a SECTOR.

In this example the sector subtends a right-angle $\left(90^{\circ}\right)$ at the centre of the circle. The non-shaded area would still be a sector if the angle at the centre of the circle was larger, or smaller, than a right-angle $\left(90^{\circ}\right)$.

We can see that the non-shaded sector is a quarter of the circle, so its area is one quarter of the total area of the circle.

$$
\begin{aligned}
\text { Area of a sector } & =\frac{1}{4}\left(\pi R^{2}\right) \text { for this example } \\
& =\frac{1}{4} \times \pi \times 10^{2} \\
& =\frac{1}{4} \times 100 \pi \\
& =25 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Since, in this example, the angle subtended by the sector at the centre of the circle is 90° and the angle for a full circle 360° we can calculate the area of the sector as follows.

$$
\begin{aligned}
\text { Area of sector } & =\frac{90^{\circ}}{360^{\circ}} \times\left(\pi R^{2}\right) \\
& =\frac{90^{\circ}}{360^{\circ}} \times \pi 10^{2} \\
& =\frac{1}{4} \times 100 \pi \\
& =25 \pi \mathrm{~cm}^{2} \text { same as before }
\end{aligned}
$$

The same argument applies for angles other than 90° and we can state a general formula as:

$$
\text { Area of sector }=\frac{\phi}{360}\left(\pi R^{2}\right)
$$

Where ϕ is the angle (in degrees) subtended by the sector at the centre of the circle.

Exercise 1

Complete the following table:

	Radius	ϕ	Area of sector
a)	10 cm	60°	
b)	25 mm	200°	
c)	10 mm		$50 \pi \mathrm{~mm}^{2}$
d)		30°	$75 \pi \mathrm{~mm}^{2}$

Now check your answers
So far we have measured the angle, subtended by the sector, in degrees.

RADIANS

Another unit of angular measure, used frequently in engineering, is the RADIAN.
We are now going to discover how we can calculate the area of a sector when the angle it subtends is measured in radians.

Let's remind ourselves what a radian is.
A radian is defined as:
The angle (ϕ) subtended at the centre of a circle by an arc of the circle equal in length to the radius.

Now, how many radians are there in a complete circle you may ask yourself? Well, the circumference of a circle is 2π times the radius that is $2 \pi R$, and the angle subtended by one radian is equal to one radius R . So the number of radians in a complete circle is $\frac{2 \pi R}{R}=2 \pi$ radians, or to put it another way, 2π radians $=360^{\circ}$

Exercise 2

Complete the table

a)	2π radians	360^{0}
b)	π radians	$\ldots \ldots \ldots{ }^{0}$
c)	$\ldots \ldots .$. radians	90°
d)	$\ldots \ldots \ldots$. radians	45^{0}
e)	1 radian	$\ldots \ldots .{ }^{0}$

Now check your answers.
Area of the non-shaded sector is:

Area $=\frac{90^{\circ}}{360^{\circ}} \times\left(\pi 10^{2}\right)$

$$
=\frac{1}{4} \times 100 \pi=25 \pi \mathrm{~cm}^{2}
$$

But we have previously discovered that $90^{\circ}=\frac{\pi}{2}$ radians
And $360^{\circ}=2 \pi$ radians
So we can also say
Area $=\frac{\frac{\pi}{2} \text { radians }}{2 \text { tradians }} \times\left(\pi 10^{2}\right)$
$=\frac{1}{4} \times 100 \pi=25 \mathrm{~cm}^{2} \quad$ the same as before.

So it would seem reasonable to assume that:

$$
\begin{aligned}
\text { Area } & =\frac{\phi \text { radians }}{2 \pi \text { radians }} \times \pi R^{2} \\
& =\frac{\phi}{2 \pi_{1}} \times \frac{1}{\pi} R^{2} \\
& =\frac{1}{2} R^{2} \phi_{-} \quad \text { when } \phi \text { is in radians. }
\end{aligned}
$$

Area of sector $=\frac{1}{2} R^{2} \phi \quad$ when ϕ is in radians.

Exercise 3

Complete the following table:

	Angle ϕ	Radius	Area of sector
A	0.8 rads	20 mm	$\ldots \ldots \ldots \mathrm{~mm}^{2}$
B	$\ldots .$. rads	10 mm	$50 \pi \mathrm{~mm}^{2}$
C	$\frac{\pi}{2}$ rads	$\ldots . . \mathrm{mm}$	$400 \pi \mathrm{~mm}^{2}$

Now check your answers.

Exercise 4

Calculate the shaded area of the optical shutter blade and convert $\angle \phi$ to degrees of arc. The angles given are radians (${ }^{\mathrm{c}}$). Dimensions in millimetres.

Now check your answers.

ANSWERS

Exercise 1

	Radius	ϕ	Area of sector
a)	10 cm	60°	$16.67 \pi \mathrm{~cm}^{2}$ $52.37 \pi \mathrm{~cm}^{2}$
b)	25 mm	200°	$347.2 \pi \mathrm{~mm}^{2}$ $1091 \mathrm{~mm}^{2}$
c)	10 mm	$\mathbf{1 8 0}^{0}$	$50 \pi \mathrm{~mm}^{2}$
d)	30 mm	30°	$75 \pi \mathrm{~mm}^{2}$

The Answers are in bold.
a) Area of a sector $=\frac{\phi}{360} \times\left(\pi R^{2}\right)$

$$
\begin{aligned}
& =\frac{60}{360} \times \pi 10^{2} \\
& =\frac{1}{6} \times 100 \pi \\
& =16.67 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

b) Area of a sector $=\frac{\phi}{360} \times\left(\pi \mathrm{R}^{2}\right)$

$$
\begin{aligned}
& =\frac{200}{360} \times \pi 25^{2} \\
& =\frac{200}{360} \times 625 \pi \\
& =347.2 \pi \mathrm{~mm}^{2}
\end{aligned}
$$

c) Area of sector $=\frac{\phi}{360} \times\left(\pi \mathrm{R}^{2}\right)$

$$
50 \pi=\frac{\phi}{360} \times\left(\pi 10^{2}\right)
$$

$$
\frac{50 \pi \times 360}{100 \pi}=\phi
$$

$$
\phi=180^{\circ}
$$

d) Area of sector $=\frac{\phi}{360} \times\left(\pi \mathrm{R}^{2}\right)$

$$
75 \pi=\frac{30}{360} \times \pi R^{2}
$$

$$
\begin{aligned}
\frac{75 \pi}{\pi} \times \frac{360}{30} & =R^{2} \\
\mathrm{R}^{2} & =900 \\
\mathrm{R} & =30 \mathrm{~mm}
\end{aligned}
$$

Now return to the text.

Exercise 2

a)	2π radians	360°
b)	π radians	$\ldots \mathbf{1 8 0}^{\circ}$
c)	$\ldots \frac{\pi}{2} \ldots \ldots$ radians	90°
d)	$\ldots \ldots \frac{\pi}{4} \ldots$ radians	45°
e)	1 radian	$\ldots 57.3 .{ }^{\circ}$

The Answers are in bold.
a) To start you off, you have been given 2π radians $=360^{\circ}$
b) If 2π radians $=360^{\circ}$

Then π radians $=\frac{360^{\circ}}{2}=180^{\circ}$
c) If $180^{\circ}=\pi$ radians

Then $90^{\circ}=\frac{\pi}{2}$ radians
d) If $180^{\circ}=\pi$ radians

Then $45^{\circ}=\frac{\pi}{4}$ radians

Similarly $60^{\circ}=\frac{\pi}{3}$ radians
These are useful to remember
$30^{\circ}=\frac{\pi}{6}$ radians
e) If π radians $=180^{\circ}$
then 1 radian $=\frac{180^{\circ}}{\pi}=57.3^{\circ}$
57.3^{0} is an easy figure to remember and is accurate for most practical purposes.
Where greater accuracy is required, use conversion tables or a scientific calculator.

Now return to the text.

Exercise 3

	Angle ϕ	Radius	Area of sector
A	0.8 rads	20 mm	$160 \mathrm{~mm}^{2}$
B	$\ldots . . \pi \cdot$ rads	10 mm	$50 \pi \mathrm{~mm}^{2}$
C	$\frac{\pi}{2}$ rads	$\ldots .40 . \mathrm{mm}$	$400 \pi \mathrm{~mm}^{2}$

The Answers are in bold.
a) Area of a sector $=\frac{1}{2} \mathrm{R}^{2} \phi$

$$
\begin{aligned}
& =\frac{1}{2} \times 20^{2} \times 0.8 \\
& =\frac{1}{2} \times 400 \times 0.8 \\
& =160 \mathrm{~mm}^{2}
\end{aligned}
$$

b) \quad Area of a sector $=\frac{1}{2} \mathrm{R}^{2 \phi}$

$$
\begin{aligned}
& 50 \pi \mathrm{~mm}^{2}=\frac{1}{2} \times 10^{2} \times \phi \\
& \frac{50 \pi}{\left(\frac{1}{2} \times 10^{2}\right)}=\phi
\end{aligned}
$$

$$
\frac{50 \pi}{50}=\phi
$$

$$
\phi=\pi \text { radians (or } 180^{\circ} \text {) }
$$

Learning

c) \quad Area of a sector $=\frac{1}{2} R^{2} \phi$

$$
\begin{aligned}
400 \pi \mathrm{~mm}^{2} & =\frac{1}{2} \times R^{2} \times \frac{\pi}{2} \\
\frac{400 \pi}{\left(\frac{1}{2} \times \frac{\pi}{2}\right)} & =R^{2} \\
400 \times 4 & =\mathrm{R}^{2} \\
1600 & =\mathrm{R}^{2} \\
\mathrm{R} & =40 \mathrm{~mm}
\end{aligned}
$$

Now return to the text.

Exercise 4

The shutter blade is made up from a number of sectors with a common centre and it is symmetrical about its centre lines.
a) First let's find the overall blank area.

Total area $=\frac{1}{2} R^{2} \phi$

$$
=\frac{1}{2} \times 75^{2} \times 1.06
$$

$$
=\frac{1}{2} \times 5625 \times 1.06
$$

$$
=2981.25 \mathrm{~mm}^{2}
$$

Area $\mathrm{A}=\frac{1}{2} R^{2} \phi$

$$
\begin{aligned}
& =\frac{1}{2} \times 12^{2} \times 1.06 \\
& =\frac{1}{2} \times 144 \times 1.06 \\
& =76.32 \mathrm{~mm}^{2}
\end{aligned}
$$

Shutter blank area is the difference between these two areas.
Shutter blank area $=2981.25-76.32$

$$
=2904.93 \mathrm{~mm}^{2}
$$

b) Now let's find the area of the "window". Again, this is the difference of two sectors

Area of larger sector

$$
\begin{aligned}
& =\frac{1}{2} R^{2} \phi \\
& =\frac{1}{2} \times 65^{2} \times 0.7 \\
& =\frac{1}{2} \times 4225 \times 0.7 \\
& =1478.75 \mathrm{~mm}^{2}
\end{aligned}
$$

Area of smaller sector

$$
\begin{aligned}
= & \frac{1}{2} R^{2} \phi \\
& =\frac{1}{2} \times 45^{2} \times 0.7 \\
= & \frac{1}{2} \times 2025 \times 0.7 \\
= & 708.75 \mathrm{~mm}^{2}
\end{aligned}
$$

The "window" area is the difference between these areas.
Window area $=1478.75-708.75=770 \mathrm{~mm}^{2}$
c) To find the shaded area of the optical shutter, we take the window area from the shutter blank area.

Shaded are $=2904.93-770$
$=2134.93 \mathrm{~mm}^{2}$
d) Finally we have to convert ϕ to degrees of arc. (ϕ is given as 1.06 radians)

Remember we have found that 1 radian $=57.3^{\circ}$

To convert radians to degrees, multiply by 57.3
To convert degrees to radians, divide by 57.3
So 1.06 radians $=1.06 \times 57.3=60.74^{0}$

