

CIRCLES, SECTORS AND RADIANS

SECTORS

The non-shaded area of the circle shown below is called a **SECTOR**.

In this example the **sector** subtends a right-angle (90°) at the centre of the circle. The non-shaded area would still be a **sector** if the angle at the centre of the circle was larger, or smaller, than a right-angle (90°) .

We can see that the non-shaded **sector** is a quarter of the circle, so its area is one quarter of the total area of the circle.

Area of a sector = $\frac{1}{4}(\pi R^2)$ for this example = $\frac{1}{4} \times \pi \times 10^2$ = $\frac{1}{4} \times 100\pi$ = $25\pi cm^2$

Since, in this example, the angle subtended by the sector at the centre of the circle is 90⁰ and the angle for a full circle 360⁰ we can calculate the area of the sector as follows.

Area of sector =
$$\frac{90^{\circ}}{360^{\circ}} \times (\pi R^2)$$

= $\frac{90^{\circ}}{360^{\circ}} \times \pi 10^2$
= $\frac{1}{4} \times 100\pi$
= 25π cm² same as before.

The same argument applies for angles other than 90⁰ and we can state a general formula as:

Area of sector =
$$\frac{\phi}{360}(\pi R^2)$$

Where ϕ is the angle (in degrees) subtended by the sector at the centre of the circle.

Exercise 1

Complete the following table:

	Radius	ϕ	Area of sector
a)	10cm	60 ⁰	
b)	25mm	200 ⁰	
c)	10mm		$50 \pi \text{ mm}^2$
d)		30 ⁰	$75 \pi \text{ mm}^2$

Now check your answers

So far we have measured the angle, subtended by the sector, in degrees.

RADIANS

Another unit of angular measure, used frequently in engineering, is the **RADIAN**.

We are now going to discover how we can calculate the area of a sector when the angle it subtends is measured in radians.

Let's remind ourselves what a radian is.

A radian is defined as:

The angle (ϕ) subtended at the centre of a circle by an arc of the circle equal in length to the radius.

Now, how many radians are there in a complete circle you may ask yourself? Well, the circumference of a circle is 2π times the radius that is $2\pi R$, and the angle subtended by one radian is equal to one radius

R. So the number of radians in a complete circle is $\frac{2\pi R}{R} = 2\pi$ radians, or to put it another way, 2π radians = 360°

Exercise 2

Complete the table

a)	2π radians	360 ⁰
b)	π radians	0
c)	radians	90 ⁰
d)	radians	45 ⁰
e)	1 radian	0

Now check your answers.

Area of the non-shaded sector is:

Area =
$$\frac{90^{\circ}}{360^{\circ}} \times (\pi \ 10^2)$$

= $\frac{1}{4} \times 100\pi = 25\pi \ \text{cm}^2$

But we have previously discovered that $90^{\circ} = \frac{\pi}{2}$ radians

And $360^\circ = 2\pi$ radians

So we can also say

Area =
$$\frac{\frac{\pi}{2} radians}{2\pi radians} \times (\pi 10^2)$$

= $\frac{1}{4} \times 100\pi = 25cm^2$ the same as before.

So it would seem reasonable to assume that:

Area =
$$\frac{\phi radians}{2\pi radians} \times \pi R^2$$

= $\frac{\phi}{2\pi_1} \times \frac{1}{\pi} R^2$ /

when ϕ is in radians.

Area of sector = $\frac{1}{2}R^2\phi$ when ϕ is in radians.

Exercise 3

Complete the following table:

	Angle ϕ	Radius	Area of sector
А	0.8 rads	20mm	mm²
В	rads	10mm	$50\pi\mathrm{mm^2}$
С	$\frac{\pi}{2}$ rads	mm	$400 \pi \text{ mm}^2$

Now check your answers.

Exercise 4

Calculate the shaded area of the optical shutter blade and convert $\angle \phi$ to degrees of arc. The angles given are radians (^c). Dimensions in millimetres.

Now check your answers.

ANSWERS

Exercise 1

	Radius	ϕ	Area of sector
a)	10cm	60 ⁰	16.67 π cm ²
			52.37 π cm ²
b)	25mm	200 ⁰	347.2 π mm ²
			1091mm ²
c)	10mm	180 ^º	$50 \pi\mathrm{mm^2}$
d)	30mm	30 ⁰	$75 \pi\mathrm{mm^2}$

The Answers are in **bold**.

a) Area of a sector
$$= \frac{\phi}{360} \times (\pi R^2)$$
$$= \frac{60}{360} \times \pi 10^2$$
$$= \frac{1}{6} \times 100 \pi$$
$$= 16.67 \pi cm^2$$
b) Area of a sector
$$= \frac{\phi}{360} \times (\pi R^2)$$
$$= \frac{200}{360} \times \pi 25^2$$
$$= \frac{200}{360} \times 625\pi$$
$$= 347.2\pi nm^2$$
c) Area of sector
$$= \frac{\phi}{360} \times (\pi R^2)$$
$$= 50 \pi = \frac{\phi}{360} \times (\pi 10^2)$$
$$\frac{50\pi \times 360}{100\pi} = \phi$$
$$\phi = 180^0$$

University of Northampton

d) Area of sector
$$= \frac{\phi}{360} \times (\pi R^2)$$
$$75 \pi = \frac{30}{360} \times \pi R^2$$
$$\frac{75\pi}{\pi} \times \frac{360}{30} = R^2$$
$$R^2 = 900$$
$$R = 30 \text{mm}$$

Now return to the text.

Exercise 2

a)	2π radians	360 ⁰
b)	π radians	180 0
c)	$\frac{\pi}{2}$ radians	90 ⁰
d)	$\dots, \frac{\pi}{4}$ radians	45 ⁰
e)	1 radian	57.3 . ⁰

The Answers are in **bold**.

a) To start you off, you have been given
$$2\pi$$
 radians = 360°

b) If
$$2\pi$$
 radians = 360°
Then π radians = $\frac{360^{\circ}}{2}$ = 180°

c) If $180^{\circ} = \pi$ radians Then $90^{\circ} = \frac{\pi}{2}$ radians d) If $180^{\circ} = \pi$ radians

Then
$$45^\circ = \frac{\pi}{4}$$
 radians

Similarly $60^{\circ} = \frac{\pi}{3}$ radians **These are useful to remember** $30^{\circ} = \frac{\pi}{6}$ radians

e) If π radians = 180°

then 1 radian = $\frac{180^{\circ}}{\pi}$ = 57.3°

57.3[°] is an easy figure to remember and is accurate for most practical purposes. Where greater accuracy is required, use conversion tables or a scientific calculator.

Now return to the text.

Exercise 3

	Angle ϕ	Radius	Area of sector
А	0.8 rads	20mm	160 mm ²
В	$\dots \pi$.rads	10mm	$50 \pi \mathrm{mm^2}$
С	$\frac{\pi}{2}$ rads	40 .mm	$400 \pi \mathrm{mm^2}$

The Answers are in **bold**.

a) Area of a sector
$$= \frac{1}{2} R^2 \phi$$
$$= \frac{1}{2} \times 20^2 \times 0.8$$
$$= \frac{1}{2} \times 400 \times 0.8$$
$$= 160 \text{mm}^2$$

b) Area of a sector =
$$\frac{1}{2} R^2 \phi$$

 $50 \pi mm^2 = \frac{1}{2} \times 10^2 \times \phi$
 $\frac{50\pi}{(\frac{1}{2} \times 10^2)} = \phi$
 $\frac{50\pi}{50} = \phi$

$$\phi = \pi$$
 radians (or 180°)

c) Area of a sector = $\frac{1}{2} R^2 \phi$ $400 \pi mm^2 = \frac{1}{2} \times R^2 \times \frac{\pi}{2}$ $\frac{400\pi}{(\frac{1}{2} \times \frac{\pi}{2})} = R^2$ $400 \times 4 = R^2$ $1600 = R^2$ R = 40 mm

Now return to the text.

Exercise 4

The shutter blade is made up from a number of sectors with a common centre and it is symmetrical about its centre lines.

a) First let's find the overall blank area.

Area A =
$$\frac{1}{2}R^2\phi$$

= $\frac{1}{2} \times 12^2 \times 1.06$
= $\frac{1}{2} \times 144 \times 1.06$
= 76.32mm²

Shutter blank area is the difference between these two areas.

Shutter blank area = 2981.25 - 76.32

= 2904.93 mm²

b) Now let's find the area of the "window". Again, this is the difference of two sectors

Area of larger sector

$$= \frac{1}{2}R^2\phi$$
$$= \frac{1}{2} \times 65^2 \times 0.7$$
$$= \frac{1}{2} \times 4225 \times 0.7$$

= 1478.75mm²

University of Northampton

Area of smaller sector

$$=\frac{1}{2}R^2\phi$$

$$= \frac{1}{2} \times 45^2 \times 0.7$$
$$= \frac{1}{2} \times 2025 \times 0.7$$
$$= 708.75 \text{mm}^2$$

The "window" area is the difference between these areas.

Window area = 1478.75 - 708.75 = 770mm²

c) To find the shaded area of the optical shutter, we take the window area from the shutter blank area.

Shaded are = 2904.93 - 770

= 2134.93mm²

d) Finally we have to convert ϕ to degrees of arc. (ϕ is given as 1.06 radians) Remember we have found that 1 radian = 57.3^o

To convert radians to degrees, multiply by 57.3

To convert degrees to radians, divide by 57.3

So 1.06 radians = 1.06 x 57.3 = 60.74°