FUNCTIONS

This not new to maths, it's just a different way of writing things down.
Suppose $y=x^{2}-3 x+4$. Different vales of x give different values of $y . y$ is then said to be a `function` of x. It can be written like this: $y=f(x)=x^{2}-3 x+4$.

If $y=x^{2}-6 z x+5 z^{2}$ then y depends on two variables x and $z . y$ is a function of x and $z: y=f(x, z)$

$$
f(x, z)=x^{2}-6 z x+5 z^{2}
$$

Sometimes y doesn't enter the picture: you may see just

$$
f(x)=4 x^{3}-3 x+7
$$

or $\quad f(x)=a x^{2}+b x+c$
and instead of y, the text will refer to `the function` or just ` $f(x)$.
Notice in the last example that, although there are several letters on the right-hand-side, the function is f (x) not $f(x, a, b, c)$. That that means that a, b and c are constants.
The fact that they come from early in the alphabet supports that.
Here are two examples:
The total interest I on an account which gives interest at a rate of $R \%$ per year depends on the principal P (the starting summing) and the time T in years:

$$
I=f(P, R, T)
$$

If the interest is simple then $f(P, R, T)=\frac{P R T}{100}$
The power P dissipated in a resistance R depends on the current I through it:

$$
\begin{aligned}
& P=f(I, R) \\
& f(I, R)=I^{2} R
\end{aligned}
$$

Exercise 1

Use the function notation in the following examples, first to show that the first variable is a function of the rest, then to state what the function is. In the case of I, P, R and T, the answer would be:

$$
\begin{aligned}
& I=f(P, R, T) \\
& f(P, R, T)=\frac{P R T}{100}
\end{aligned}
$$

a) Circumference and radius of a circle.
b) A, $r \quad$ Area and radius of a circle.
c) $\quad A, l, b \quad$ Area, length and breadth of a rectangle.
d) $I, E, R \quad$ Current, voltage and resistance.
e) H, I, E Happiness, income, expenditure.
f) $\quad R, M \quad$ Retail Price Index, Money supply

Now check your answers.

OTHER FUNCTIONS

The letter ` \(f\) ' is most often used for a function, but any letter can be used. It's common practice to use ' \(f\) ' for the first function, then \(` g\) ' and ${ }^{`} h$ ' for other functions if necessary.

For example: $f(x)=3 x+5$

$$
\begin{aligned}
& g(x)=x^{2}-5 x+7 \\
& h(x)=3 x^{4}
\end{aligned}
$$

Capital letters are also allowed. Normally $F(x)$ is not the same as $f(x)$.

DERIVATIVES

When the function is written as $f(x)$, then the derivative is written as $f^{`}(x)$. This is spoken as `eff dashed exe `or (sometimes) `eff dash exe`.

If $y=f(x)=x^{3}$ then $\frac{d y}{d x}=f^{`}(x)=3 x^{2}$
Of course, if the function is $g(x)$ then the derivative is $g `(x)$.

Exercise 2

To get used to the idea, write down a few functions and derivatives like this:

$$
\begin{aligned}
& f(x)=5 x^{3}-8 x \\
& f^{\prime}(x)=15 x^{2}-8
\end{aligned}
$$

a) $f(x)=6 x^{2}$
b) $f(x)=x^{7}+5 x^{4}-9 x+2$
c) $f(x)=2 x^{3 / 2}-4 x^{1 / 2}$
d) $g(x)=x^{-5}-3 x^{-2}$

Now check your answers.

USEFUL SHORTHAND

The function notation also allows you to abbreviate such statements as When $x=7$, then $y=-9.2$. This becomes:

$$
f(7)=-9.2 .
$$

So for example if $f(x)=x^{2}$ then $f(0)=0$

$$
\begin{aligned}
& f(2)=4 \\
& f(5)=25 \\
& f(-3)=9 \text { and so on. }
\end{aligned}
$$

The same can be done with the derivative. If $f(x)=x^{2}$
Then $f^{`}(x)=2 x$. So $f(3)=9 \quad f^{`}(3)=6$

$$
\begin{array}{ll}
f(7)=49 & f^{\prime}(7)=14 \\
& f^{\prime}(9)=18 \\
& f^{\prime}(14)=28
\end{array}
$$

The essential steps in finding (for example) $f^{`}(7)$ are first to find the formula of $f^{`}(x)$, then put $x=7$ into the formula.

Exercise 3

1. $f(x)=3 x^{2}-5 \quad$ Write down the values of
a) $\quad f(0)$
b) $\quad f(2)$
c) $f^{\prime}(1)$
d) $f^{\prime}(-4)$
2. $g(x)=8 x^{-1}+2 x \quad$ Write down the values of
a) $\quad g^{`}(1)$
b) $\quad g^{`}(2)$
c) $g(2)$
d) $g(3)$

Now check your answers.

SUMMARY

$y=f(x)$ means y is a function of x. That means that the formula for y involves the variable x and some constants.

Equations like $y=3 x^{2}-7$ can be written in two parts:

$$
\begin{aligned}
& y=f(x) \\
& f(x)=3 x^{2}-7
\end{aligned}
$$

Sometimes y is left out altogether. The statement of the function is simply $f(x)=3 x^{2}-7$
$f(2)$ means `the value of the function when \(x=2\) `. So if $f(x)=3 x^{2}-7$, then $f(2)=5$
Any letter, small or capital, can be used to label a function: $f(x), g(x), b(x), F(x)$ are all allowed. $y=f(x, z)$ means the formula for y includes two variables x and z, and some constants. The derivative of the function $f(x)$ is indicated by $f^{\prime}(x)$.

If $f(x)=3 x^{2}-7$, then $f^{\prime}(x)=6 x$. If $y=f(x)$ then $f^{`}(x)$ and $\frac{d y}{d x}$ have the same meaning.
$f^{\prime}(3)$ means the value of $f^{\prime}(x)$ when $x=3$. If $f(x)=3 x^{2}-7$, then $f^{`}(x)=6 x$, and $f^{\prime}(3)=18$.

ANSWERS

Exercise 1

a) $\quad C=f(r) \quad f(r)=2 \pi r$
b) $\quad A=f(r) \quad f(r)=\pi r^{2}$
c) $\quad A=f(l, b) \quad f(l, b)=l b$
d) $\quad I=f(E, R) \quad f(E, R)=\frac{E}{R}$
e) $\quad H=f(I, E)$
f) $\quad R=f(M)$

The last two formulas would have to be guesswork.

Now return to the text.

Exercise 2

a) $f(x)=6 x^{2} \quad f^{\prime}(x)=12 x$

Read the text again if you have any problems.
b) $\quad f(x)=x^{7}+5 x^{4}-9 x+2 \quad f^{`}(x)=7 x^{6}+20 x^{3}-9$
c) $f(x)=2 x^{3 / 2}-4 x^{1 / 2} \quad f^{\prime}(x)=3 x^{1 / 2}-2 x^{-1 / 2}$

If you made a slip, remember and use the basic rule:

$$
\begin{aligned}
f^{\prime}(x) & =2\left(\frac{3}{2}\right) x^{\frac{3}{2}-1}-4\left(\frac{1}{2}\right) x^{1 / 2-1} \\
& =3 x^{1 / 2}-2 x^{-1 / 2}
\end{aligned}
$$

d) $g(x)=x^{-5}-3 x^{-2} \quad g{ }^{\prime}(x)=-5 x^{-6}+6 x^{-3}$

If you got that right, then you remembered that when you differentiate x^{-5} you DON'T get $-5 x^{-4}$, you get $-5 x^{-5-1}=-5 x^{-6}$

Now return to the text.

Exercise 3

1. $f(x)=3 x^{2}-5 f^{\prime}(x)=6 x$
a) $f(0)=-5$
b) $\quad f(2)=7$
c) $\quad f^{\prime}(1)=6$
d) $f^{\prime}(-4)=-24$

The important thing here is first to differentiate to get $f^{\prime}(x)$. Then use the formula for $f(x)$ or $f^{\prime}(x)$ as needed.
2. $g(x)=8 x^{-1}+2 x g^{\prime}(x)=-8 x^{-2}+2$
a) $g^{\prime}(1)=-8+2=-6$
b) $g '(2)=\frac{-8}{4}+2=0$
c) $g(2)=\frac{8}{2}+4=8$
d) $g(3)=\frac{8}{3}+6=8 \frac{2}{3}$ or $\frac{26}{3}$

Now return to the text.

