

FUNCTIONS

This not new to maths, it's just a different way of writing things down.

Suppose $y = x^2 - 3x + 4$. Different values of x give different values of y. y is then said to be a `function` of x. It can be written like this: $y = f(x) = x^2 - 3x + 4$.

If $y = x^2 - 6zx + 5z^2$ then y depends on two variables x and z. y is a function of x and z. y = f(x, z)

 $f(x, z) = x^2 - 6zx + 5z^2$

Sometimes y doesn't enter the picture: you may see just

$$f(x) = 4x^{3} - 3x + 7$$

or
$$f(x) = a x^2 + bx + c$$

and instead of y, the text will refer to `the function` or just f(x)`.

Notice in the last example that, although there are several letters on the right-hand-side, the function is f(x) **not** f(x, a, b, c). That that means that a, b and c are constants. The fact that they come from early in the alphabet supports that.

Here are two examples:

The total interest *I* on an account which gives interest at a rate of R% per year depends on the principal *P* (the starting summing) and the time *T* in years:

I = f(P, R, T)

If the interest is simple then $f(P, R, T) = \frac{PRT}{100}$

The power P dissipated in a resistance R depends on the current I through it:

$$P = f(I, R)$$

$$f(I, R) = I^2 R$$

Exercise 1

Use the function notation in the following examples, first to show that the first variable is a function of the rest, then to state what the function is. In the case of *I*, *P*, *R* and *T*, the answer would be:

$$I=f(P,R,T)$$

$$f(P, R, T) = \frac{PRT}{100}$$

- a) *C*, *r* Circumference and radius of a circle.
- b) *A*, *r* Area and radius of a circle.

- c) *A*, *l*, *b* Area, length and breadth of a rectangle.
- d) *I*, *E*, *R* Current, voltage and resistance.
- e) *H, I, E* Happiness, income, expenditure.
- f) *R, M* Retail Price Index, Money supply.

Now check your answers.

OTHER FUNCTIONS

The letter f' is most often used for a function, but any letter can be used. It's common practice to use f' for the first function, then g' and h' for other functions if necessary.

For example: f(x) = 3x + 5

$$g(x) = x^2 - 5x + 7$$

 $h(x) = 3x^4$

Capital letters are also allowed. Normally F(x) is not the same as f(x).

DERIVATIVES

When the function is written as f(x), then the derivative is written as f'(x). This is spoken as `eff dashed exe ` or (sometimes) `eff dash exe `.

If
$$y = f(x) = x^{3}$$
 then $\frac{dy}{dx} = f(x) = 3x^{2}$

Of course, if the function is g(x) then the derivative is g'(x).

Exercise 2

To get used to the idea, write down a few functions and derivatives like this:

$$f(x) = 5x^3 - 8x$$

 $f'(x) = 15x^2 - 8$

- a) $f(x) = 6x^2$
- b) $f(x) = x^7 + 5x^4 9x + 2$
- c) $f(x) = 2x^{\frac{3}{2}} 4x^{\frac{1}{2}}$

d)
$$g(x) = x^{-5} - 3x^{-2}$$

Now check your answers.

USEFUL SHORTHAND

The function notation also allows you to abbreviate such statements as When x = 7, then y = -9.2. This becomes:

$$f(7) = -9.2.$$

So for example if $f(x) = x^2$ then f(0) = 0

$$f(2) = 4$$

 $f(5) = 25$
 $f(-3) = 9$ and so on.

The same can be done with the derivative. If $f(x) = x^{2}$

Then f`(x) = 2x. So f(3) = 9 f`(3) = 6f(7) = 49 f`(7) = 14f`(9) = 18f`(14) = 28

The essential steps in finding (for example) f (7) are first to find the formula of f (x), then put x = 7 into the formula.

Exercise 3

- 1. $f(x) = 3x^2 5$ Write down the values of
 - a) f(0) b) f(2)
 - c) f'(1) d) f'(-4)
- 2. $g(x) = 8x^{-1} + 2x$ Write down the values of

a)	g`(1)	b)	g`(2)
c)	g(2)	d)	g(3)

Now check your answers.

SUMMARY

y = f(x) means y is a function of x. That means that the formula for y involves the variable x and some constants.

Equations like $y = 3x^2 - 7$ can be written in two parts:

$$y = f(x)$$

 $f(x) = 3 x^{2} - 7$

Sometimes *y* is left out altogether. The statement of the function is simply $f(x) = 3x^2 - 7$

f(2) means `the value of the function when x = 2`. So if $f(x) = 3x^{2} - 7$, then f(2) = 5

Any letter, small or capital, can be used to label a function: f(x), g(x), b(x), F(x) are all allowed.

y = f(x, z) means the formula for y includes two variables x and z, and some constants.

The derivative of the function f(x) is indicated by f(x).

If $f(x) = 3x^2 - 7$, then f(x) = 6x. If y = f(x) then f(x) and $\frac{dy}{dx}$ have the same meaning.

f'(3) means the value of f'(x) when x = 3. If $f(x) = 3x^2 - 7$, then f'(x) = 6x, and f'(3) = 18.

ANSWERS

Exercise 1

a) $C = f(r) f(r) = 2\pi r$

b)
$$A = f(r) \quad f(r) = \pi r^2$$

- c) $A = f(l, b) \quad f(l, b) = l b$
- d) $I = f(E, R) \quad f(E, R) = \frac{E}{R}$
- e) H=f(I, E)

f)
$$R = f(M)$$

The last two formulas would have to be guesswork.

Now return to the text.

Exercise 2

a) $f(x) = 6x^2$ f'(x) = 12x

Read the text again if you have any problems.

- b) $f(x) = x^{7} + 5x^{4} 9x + 2$ $f(x) = 7x^{6} + 20x^{3} 9$
- c) $f(x) = 2x^{\frac{3}{2}} 4x^{\frac{1}{2}} f(x) = 3x^{\frac{1}{2}} 2x^{-\frac{1}{2}}$

If you made a slip, remember and use the basic rule:

$$f'(x) = 2\left(\frac{3}{2}\right) x^{\frac{3}{2}-1} - 4\left(\frac{1}{2}\right) x^{\frac{1}{2}-1}$$
$$= 3 x^{\frac{1}{2}} - 2 x^{-\frac{1}{2}}$$

d) $g(x) = x^{-5} - 3x^{-2}$ $g'(x) = -5x^{-6} + 6x^{-3}$

If you got that right, then you remembered that when you differentiate x^{-5} you DON'T get $-5 x^{-4}$, you get $-5 x^{-5-1} = -5 x^{-6}$

Now return to the text.

Exercise 3

1.
$$f(x) = 3x^{2} - 5f'(x) = 6x$$

a) $f(0) = -5$
b) $f(2) = 7$
c) $f'(1) = 6$
d) $f'(-4) = -24$

The important thing here is first to differentiate to get f'(x). Then use the formula for f(x) or f'(x) as needed.

2.
$$g(x) = 8x^{-1} + 2xg'(x) = -8x^{-2} + 2$$

a) g'(1) = -8 + 2 = -6 b) $g'(2) = \frac{-8}{4} + 2 = 0$

c)
$$g(2) = \frac{8}{2} + 4 = 8$$
 d) $g(3) = \frac{8}{3} + 6 = 8\frac{2}{3}$ or $\frac{26}{3}$

Now return to the text.