FRACTIONS

WHAT IS A FRACTION?

A fraction is a part of a whole
1.

This shaded area is one part out of 2. Written $1 / 2$, said 'one-half'.

2.

This shaded area is one part out of 3 . Written $1 / 3$, said 'one-third'.

3.

This shaded area is two parts out of 3 . Written $2 / 3$, said 'two-thirds'.

As you can see, these figures are divided into equal parts.
If all the parts are different, as in the example below (not equal parts), then the shaded area is not a third.

However, the diagram below is divided into eight equal parts, so the shaded area is 'three-eights'.

A fraction has	a top number	Numerator
	AND	
	A bottom number	Denominator

The line shows that the top number (the numerator) is divided by the bottom number (the denominator).
There are three types of fractions:

1. Common (or vulgar or proper) fractions where the numerator is less than the denominator.
e.g. $\frac{1}{2}, \frac{3}{4}, \frac{1}{8}$
2. Improper (sometimes called 'top heavy' fractions) where the numerator is greater than the denominator.
e.g. $\frac{5}{2}, \frac{7}{3}, \frac{19}{7}$
3. Mixed numbers, where the number has whole numbers and parts of whole numbers (common fractions).
e.g. $12 \frac{1}{2}$,
$345 \frac{4}{9}$
$27 \frac{11}{12}$

Remember, the value of a fraction is unchanged if the numerator and the denominator are BOTH multiplied by or are BOTH divided by the same number; for example:-
$\frac{30}{40}$ is the same as $\frac{3}{4}$ (both top and bottom divided by 10)
$\frac{3}{27}$ is the same as $\frac{1}{9}$ (both top and bottom divided by 3)
$\frac{2}{3}$ is the same as $\frac{4}{6}$ (both top and bottom multiplied by 2)
$\frac{1}{7}$ is the same as $\frac{6}{42}$ (both top and bottom multiplied by 6)
What is the numerator in the next example?

$$
\frac{3}{4}=\frac{?}{28}
$$

You must ask yourself by what have you multiplied the 4 (three-quarters) to get to 28 . The answer is 7 , so you must multiply the numerator (the three), by the same number (7).

$$
\text { So, } 3 \times 7=21 \text { : }
$$

The new numerator is 21 :

$$
\frac{3}{4}=\frac{21}{28}
$$

What is the new denominator here?

$$
\frac{6}{27}=\frac{2}{?}
$$

By what have you divided 6 to get to 2 ?

Answer is by 3 , so you must now divide 27 by 3 to give you the new denominator. $27 \div 3=9$ (new denominator)

So, $\frac{6}{27}=\frac{2}{9}$
Now fill in these gaps.

Exercise 1

1. $\frac{2}{7}=\frac{?}{14}$
2. $\frac{4}{5}=\frac{?}{25}$
3. $\frac{3}{8}=\frac{6}{?}$
4. $\frac{3}{10}=\frac{?}{40}$
5. $\frac{1}{7}=\frac{5}{?}$
6. $\frac{4}{12}=\frac{1}{\text { ? }}$
7. $\frac{10}{25}=\frac{?}{5}$
8. $\frac{9}{15}=\frac{3}{?}$
9. $\frac{8}{64}=\frac{?}{8}$
$10 \quad \frac{18}{48}=\frac{3}{?}$

REDUCING A FRACTION TO ITS LOWEST TERMS

(You may know this as 'cancelling')

Example 1

reduce $\frac{10}{12}$ to its lowest terms
First ask which number goes into both 10 and 12 (without a remainder, of course!)?

Answer is 2 , so divide both numerator and denominator by 2.
What does this give you?

$$
\frac{10}{12} \div \frac{2}{2}=\frac{5}{6}
$$

As there is no number which 'goes into' 5 and 6 this fraction cannot be reduced, so you have now finished cancelling.

Example 2

reduce $\frac{132}{198}$ to its lowest terms

1. Divide top and bottom by 2 , to give

$$
\frac{132}{198} \div \frac{2}{2}=\frac{66}{99}
$$

2. Divide the new fraction by 11

$$
\frac{66}{99} \div \frac{11}{11}=\frac{6}{9}
$$

3. Now divide this by 3

$$
\frac{6}{9} \div \frac{3}{3}=\frac{2}{3}
$$

This will reduce no more, and so it is the answer!

Exercise 2

1. $\frac{9}{18}$
2. $\frac{15}{25}$
3. $\frac{42}{48}$
4. $\frac{180}{240}$
5. $\frac{210}{315}$

CHANGING MIXED NUMBERS TO IMPROPER FRACTIONS

Example 1

$2 \frac{1}{4}$ is a mixed number
How do I change this into an improper fraction?

1. Multiply the whole number by the denominator $2 \times 4=8$
2. Add this to the numerator $8+1=9$
3. The denominator stays the same
4. The new numerator, 9 , is placed over the 4 giving $\frac{9}{4}$

Example 2

change $5 \frac{3}{7}$ to an improper fraction.

1. Multiply the whole number 5 , by the denominator $7,5 \times 7=35$
2. Add to this the numerator $35+3=38$
3. Put this over the original denominator, giving $\frac{38}{7}$ (answer)

Example 3

$4 \frac{3}{10}$ to an improper fraction is $\frac{43}{10}$
Go through the steps to check how this answer was reached, then try the examples.

Exercise 3

1. $3 \frac{1}{2}$
2. $4 \frac{2}{5}$
3. $3 \frac{7}{8}$
4. $15 \frac{1}{2}$
5. $3 \frac{5}{9}$

CHANGING IMPROPER FRACTIONS TO MIXED NUMBERS

Example 1

$\frac{22}{7}$ Divide the numerator by the denominator $22 \div 7=3$ remainder 1 . The 3 is the whole number and the remainder is the new numerator. The denominator stays the same.
Answer $=3 \frac{1}{7}$

Example 2

$\frac{7}{2} \quad$ as a mixed number?
Divide the 7 by the 2 , this gives 3 remainder 1 . The 3 is the whole number, the remainder is the numerator.
Answer $=3 \frac{1}{2}$

Exercise 4

1. $\frac{13}{2}$
2. $\frac{23}{7}$
3. $\frac{18}{5}$
4. $\frac{29}{11}$
5. $\frac{53}{12}$

MULTIPLICATIONS OF FRACTIONS

Example 1

$$
\frac{1}{2} \times \frac{1}{3}
$$

Steps to take to multiply

1. See if any numbers will cancel in this case, none will.
2. Multiply the numerators (top numbers) to give the new numerator $1 \times 1=1$.
3. Multiply the denominators (bottom numbers) to give the new denominator $2 \times 3=6$.

So the answer is $\frac{1 \times 1}{2 \times 3}=\frac{1}{6}$

Example 2

$$
\frac{2}{3} \times \frac{3}{4}
$$

1. Will any numbers cancel? Yes 2 will go into 4 . Then 3 will go into 3 .

CANCEL

2. Now multiply the numerators $(1 \times 1=1)$
3. Multiply the denominators $(1 \times 2=2)$

Answer $=\frac{1}{2}$
The main point to remember is that, when you are cancelling, you can cancel any numerator with any denominator:
E.g.

$$
\begin{aligned}
& \frac{Z}{Z} \times \frac{{ }^{1}}{\alpha} \times \frac{1}{1} \frac{1}{1} \times \frac{\not D}{\alpha} \\
& 122 \\
& \text { to give } \frac{1}{1} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}
\end{aligned}
$$

Do not worry if you have not cancelled fully at this stage - you will be able to reduce the fraction to its lowest terms at the end of your calculation.

MULTIPLICATION WITH MIXED NUMBERS

Example 1

$3 \frac{1}{2} \times \frac{4}{7}$
FIRST STEP - change mixed numbers to IMPROPER FRACTIONS.
So, $3 \frac{1}{2}$ becomes $\frac{7}{2}$
The sum now looks like this:
12
$\frac{Z}{Z 2} \times \frac{Z}{Z}=\frac{1}{1} \times \frac{2}{1}=\frac{2}{1}$
11
Answer = 2

Notice that cancelling takes place as usual after you have changed the mixed numbers to improper fractions.

Example 2

$1 \frac{4}{9} \times 2 \frac{1}{2} \quad$ becomes $\quad \frac{13}{9} \times \frac{5}{2}=\frac{65}{18}=3 \frac{11}{18}$
Or set the sum out as:
$1 \frac{4}{9} \times 2 \frac{1}{2}=\frac{13}{9} \times \frac{5}{2}=\frac{65}{18}$

$$
=3 \frac{11}{18}
$$

Example 3

$2 \times \frac{3}{7} 2$ is written as ' 2 over 1 ' or $\frac{2}{1}$ so the sum can be written as:
$\frac{2}{1} \times \frac{3}{7}=\frac{6}{7}$ or set the sum out as:
$2 \times \frac{3}{7}=\frac{2}{1} \times \frac{3}{7}=\frac{6}{7}$

Example 4

$$
\begin{aligned}
& \frac{7}{8} \times 4 \text { becomes } \frac{7}{\not 8} \times \frac{A}{1} \quad \text { Cancel } 4 \text { and } 8 \\
& =\frac{7}{2} \times \frac{1}{1}=\frac{7}{2}=3 \frac{1}{2} \text { or set the sum out as: } \frac{7}{8} \times 4=\frac{7}{2} \times \frac{1}{1}=\frac{7}{2}=3 \frac{1}{2}
\end{aligned}
$$

Example 5

$5 \times 2 \frac{3}{7}$ becomes $\frac{5}{1} \times \frac{17}{7}=\frac{85}{7}=12 \frac{1}{7}$

Example 6

What is two thirds of four and a half? You know that 'of' means multiply, so you can now write this sum as follows:

$$
\frac{2}{7} \times \frac{3}{2} \times \frac{g}{2}=\frac{1}{1} \times \frac{3}{1}=\frac{3}{1}
$$

Now try Exercise 5, use the examples given above to help you.

Exercise 5

1. $\frac{3}{5} \times \frac{4}{7}$
2. $\frac{3}{5} \times \frac{5}{9}$
3. $\frac{3}{5} \times \frac{1}{3}$
4. $2 \frac{1}{2} \times \frac{4}{5}$
5. $3 \frac{1}{2} \times 4 \frac{1}{7}$
6. $3 \times \frac{2}{7}$
7. $\frac{3}{5} \times 5$
8. $2 \times 1 \frac{1}{2} \times \frac{1}{3}$
9. $3 \frac{3}{4} \times 1 \frac{3}{5} \times 1 \frac{1}{8}$
10. $\frac{4}{5}$ of $1 \frac{1}{2}$

DIVISION OF FRACTIONS

Remember that you must change mixed numbers to improper fractions

1. The first fraction remains the same.
2. Change the division sign to a multiplication sign.
3. Invert (or turn upside down) the second fraction.
4. Carry on as you would for multiplication of fractions.

So using the steps above:

Example 1

$$
\begin{aligned}
& \frac{2}{3} \div \frac{5}{7} \\
& \frac{2}{3} \div \frac{5}{7}=\frac{2}{3} \times \frac{7}{5}=\frac{14}{15}
\end{aligned}
$$

Example 2

$1 \frac{4}{5} \div \frac{2}{3} \quad$ becomes $\frac{9}{5} \times \frac{3}{2}=\frac{27}{10}=2 \frac{7}{10}$

Example 3

$$
1 \frac{4}{5} \div 2 \frac{1}{3} \quad \text { becomes } \frac{9}{5} \div \frac{7}{3}=\frac{9}{5} \times \frac{3}{7}=\frac{27}{35}
$$

Example 4

4 divided by $\frac{3}{4}$ becomes $\frac{4}{1} \times \frac{4}{3}=\frac{16}{3}=5 \frac{1}{3}$

Example 5

$$
\begin{aligned}
& 2 \frac{1}{2} \text { divided by } 10=\frac{5}{2} \div \frac{10}{1} \\
& =\frac{1}{2} \times \frac{1}{\frac{-\theta}{2}}=\frac{1 \times 1}{2 \times 2}=1
\end{aligned}
$$

Exercise 6

1. $\frac{3}{4} \div \frac{1}{2}$
2. $\frac{5}{6} \div \frac{2}{3}$
3. $2 \frac{1}{2} \div 1 \frac{1}{4}$
4. $5 \frac{1}{3} \div \frac{4}{9}$
5. $\frac{5}{12} \div 2 \frac{1}{2}$
6. $1 \frac{1}{2} \div \frac{3}{7}$
7. $1 \frac{3}{4} \div \frac{1}{8}$
8. $1 \frac{1}{6} \div 4 \frac{2}{3}$
9. $\frac{3}{5} \div \frac{9}{20}$
10. $3 \frac{1}{3} \div \frac{5}{9}$

ADDITION OF FRACTION

Just as we can add 4 bananas to 3 bananas (7 bananas) we can add 4 twelfths to 3 twelfths (7 twelfths). Similarly, if we try to add 4 bananas to 3 oranges we still have 4 bananas and 3 oranges, then we cannot add 4 fifths to 3 sevenths.

You can only add (or subtract) fractions when the denominators have the same number.

$+$

Just as $\frac{1}{3}+\frac{1}{3}=\frac{1+1}{3}=\frac{2}{3}$
Notice that only the numerators are added!

$$
\frac{1}{5}+\frac{2}{5}=\frac{3}{5}
$$

Two or more fractions which have different denominators cannot be added until you alter them so that the denominators are the same.

You will now use your knowledge of equivalent fractions and lowest common multiple!

Example 1

$\frac{1}{2}+\frac{1}{3}$ cannot be added yet until the denominators have the same number. Ask which is the lowest number into which both 2 and 3 will divide exactly? 6 is the lowest number.

You know that $\frac{1}{2}$ is also $\frac{3}{6}$ and that $\frac{1}{3}$ is also $\frac{2}{6}$
Now that you have the equivalent fractions with the same denominator, the adding can take place, $\frac{3}{6}+\frac{2}{6}=\frac{5}{6}$

Only Numerators Are Added!

Example 2

$\frac{2}{7}+\frac{3}{4} 28$ is the lowest number into which 4 and 7 will divide.
$\frac{2}{7}$ can also be written $\frac{8}{28}$ and $\frac{3}{4}$ can also be written $\frac{21}{28}$
Now that the denominators are the same the two fractions can be added to give:

$$
\frac{8}{28}+\frac{21}{28}=\frac{8+21}{28}=\frac{29}{28}=1 \frac{1}{28}
$$

If you have mixed numbers, there are various methods which you can use. We suggest that the following way may be the simplest:

Example 3

$$
1 \frac{1}{2}+2 \frac{1}{3}
$$

1. Add the whole numbers

$$
3+\frac{1}{2}+\frac{1}{3}
$$

2. Now carry on as before for the fraction parts
$3 \frac{3}{6}+\frac{2}{6}=3 \frac{3+2}{6}=3 \frac{5}{6}$
Make Sure that you write the whole number each time (otherwise, you may forget it) and that you write it bigger than the fraction

Example 4

$$
\begin{aligned}
& \frac{2}{3}+\frac{4}{9} \\
= & \frac{6}{9}+\frac{4}{9} \\
= & \frac{10}{9}=1 \frac{1}{9}
\end{aligned}
$$

Example 5

$$
\begin{aligned}
& 2 \frac{3}{4}+1 \frac{1}{2} \\
& 12 \frac{3}{4}+1 \frac{2}{4} \\
= & 13 \frac{5}{4} \\
= & 14 \frac{1}{4}
\end{aligned}
$$

Example 6

$$
\begin{aligned}
& 4 \frac{1}{2}+3 \frac{5}{6}+2 \frac{1}{3} \\
= & 9 \frac{3}{6}+\frac{5}{6}+\frac{2}{6} \\
= & 9 \frac{3+5+2}{6} \\
= & 9 \frac{10}{6} \\
= & 9+1 \frac{4}{6} \\
= & 9+1 \frac{2}{3} \\
= & 10 \frac{2}{3}
\end{aligned}
$$

Exercise 7

1. $\frac{3}{4}+\frac{1}{2}$
2. $\frac{1}{7}+\frac{2}{3}$
3. $\frac{3}{4}+\frac{1}{8}$
4. $\frac{4}{5}+\frac{2}{3}$
5. $\frac{3}{4}+\frac{4}{5}$
6. $5 \frac{1}{2}+1 \frac{1}{4}$
7. $4 \frac{3}{5}+1 \frac{1}{4}$
8. $7 \frac{1}{3}+1 \frac{1}{12}$
9. $4 \frac{1}{3}+\frac{2}{3}$
10. $5 \frac{3}{8}+1 \frac{3}{4}+4 \frac{7}{8}+3 \frac{5}{16}$

SUBTRACTION OF FRACTIONS

As in addition of fractions, the denominators of the fractions must be the same;

Example 1

$$
\frac{3}{4}-\frac{1}{4}=\frac{3-1}{4}=\frac{2}{4}=\frac{1}{2}
$$

only the numerators are subtracted!

Example 2

$\frac{1}{5}-\frac{1}{10} \quad \frac{1}{5}$ can be written as $\frac{2}{10}$ so we now have $\frac{2}{10}-\frac{1}{10}=\frac{1}{10}$

Example 3

$\frac{3}{4}-\frac{2}{3}$
LCM is $12 \frac{3}{4}=\frac{9}{12}$ and $\frac{2}{3}=\frac{8}{12}$ so we can now write $\frac{9}{12}-\frac{8}{12}=\frac{9-8}{12}=\frac{1}{12}$
When you have mixed numbers we suggest the following method:

1. Change mixed numbers to improper fractions:

$$
1 \frac{5}{6}-\frac{1}{3} \quad \text { becomes } \frac{11}{6}-\frac{1}{3}
$$

2. Carry on as before - finding LCM and so the equivalent fractions, giving

$$
\frac{11}{6}-\frac{2}{6}=\frac{11-2}{6}=\frac{9}{6}=1 \frac{3}{6}=1 \frac{1}{2}
$$

Example 4

$$
\begin{aligned}
& 3 \frac{3}{4}-2 \frac{7}{8} \\
& =\frac{15}{4}-\frac{23}{8} \\
& =\frac{30}{8}-\frac{23}{8} \\
& =\frac{30-23}{8} \\
& =\frac{7}{8}
\end{aligned}
$$

Example 5

$$
\begin{aligned}
& 6-\frac{2}{3} \\
= & \frac{6}{1}-\frac{2}{3} \\
= & \frac{18}{3}-\frac{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{18-2}{3} \\
& =\frac{16}{3} \\
& =5 \frac{1}{3}
\end{aligned}
$$

Exercise 8

1. $\frac{7}{8}-\frac{3}{8}$
2. $\frac{2}{7}-\frac{1}{14}$
3. $\frac{1}{2}-\frac{3}{8}$
4. $\frac{4}{5}-\frac{3}{10}$
5. $\frac{3}{11}-\frac{1}{22}$
6. $1 \frac{1}{2}-\frac{2}{3}$
7. $3 \frac{1}{3}-\frac{5}{12}$
8. $2 \frac{5}{12}-1 \frac{7}{12}$
9. $3 \frac{3}{4}-1 \frac{7}{8}$
10. $5-\frac{3}{8}$

QUESTIONS WITH BOTH ADDING AND SUBTRACTING

Example 1

$$
2 \frac{1}{2}-1 \frac{1}{8}+3 \frac{1}{4}
$$

In this case convert all the mixed numbers to improper fractions, and carry on as before, taking care not to confuse the signs

$$
\begin{aligned}
& =\frac{5}{2}-\frac{9}{8}+\frac{13}{4} \\
& =\frac{20}{8}-\frac{9}{8}+\frac{26}{8} \\
& =\frac{20-9+26}{8} \\
& =\frac{11+26}{8} \\
& =\frac{37}{8}=4 \frac{5}{8}
\end{aligned}
$$

Exercise 9

1. $2 \frac{1}{4}-\frac{1}{8}+2 \frac{1}{2}$
2. $\frac{1}{5}-\frac{1}{10}+\frac{1}{20}$
3. $2 \frac{1}{6}-1 \frac{5}{6}+\frac{7}{12}$
4. $1 \frac{1}{4}+\frac{1}{2}-\frac{5}{8}$
5. $5 \frac{1}{10}-3 \frac{1}{2}+1 \frac{1}{4}$

ANSWERS

Exercise 1

1. $\frac{4}{14}$
2. $\frac{20}{25}$
3. $\frac{6}{16}$
4. $\frac{12}{40}$
5. $\frac{5}{35}$
6. $\frac{1}{3}$
7. $\frac{2}{5}$
8. $\frac{3}{5}$
9. $\frac{1}{8}$
10. $\frac{3}{8}$

Exercise 2

1. $\frac{1}{2}$
2. $\frac{3}{5}$
3. $\frac{7}{8}$
4. $\frac{3}{4}$
5. $\frac{2}{3}$

Exercise 3

1. $\frac{7}{2}$
2. $\frac{22}{5}$
3. $\frac{31}{8}$
4. $\frac{31}{2}$
5. $\frac{32}{9}$

Exercise 4

1. $6 \frac{1}{2}$
2. $3 \frac{2}{7}$
3. $3 \frac{3}{5}$
4. $2 \frac{7}{11}$
5. $4 \frac{5}{12}$

Exercise 5

1. $\frac{12}{35}$
2. $\frac{1}{3}$
3. $\frac{1}{5}$
4. 2
5. $14 \frac{1}{2}$
6. $\frac{6}{7}$
7. 3
8. 1
9. $6 \frac{3}{4}$
10. $1 \frac{1}{5}$

Exercise 6

1. $1 \frac{1}{2}$
2. $1 \frac{1}{4}$
3. 2
4. 12
5. $\frac{1}{6}$
6. $3 \frac{1}{2}$
7. 14
8. $\frac{1}{4}$
9. $1 \frac{1}{3}$
10. 6

Exercise 7

1. $1 \frac{1}{4}$
2. $\frac{17}{21}$
3. $\frac{7}{8}$
4. $1 \frac{7}{15}$
5. $1 \frac{11}{20}$
6. $6 \frac{3}{4}$
7. $5 \frac{17}{20}$
8. $8 \frac{5}{12}$
9. 5
10. $15 \frac{5}{16}$

Exercise 8

1. $\frac{1}{2}$
2. $\frac{3}{14}$
3. $\frac{1}{8}$
4. $\frac{1}{2}$
5. $\frac{5}{22}$
6. $\frac{5}{6}$
7. $2 \frac{11}{12}$
8. $\frac{5}{6}$
9. $1 \frac{7}{8}$
10. $4 \frac{5}{8}$

Exercise 9

1. $4 \frac{5}{8}$
2. $\frac{3}{20}$
3. $\frac{11}{12}$
4. $1 \frac{1}{8}$
5. $2 \frac{17}{20}$
