

FRACTIONS

WHAT IS A FRACTION?

A fraction is a part of a whole

This shaded area is one part out of 2.
Written ½, said 'one-half'.

This shaded area is one part out of 3.
Written 1/3, said 'one-third'.

As you can see, these figures are divided into equal parts.

If all the parts are different, as in the example below (not equal parts), then the shaded area is not a third.

However, the diagram below is divided into eight equal parts, so the shaded area is 'three-eights'.

 $\frac{3}{8}$

A fraction has a top number **Numerator**

AND

A bottom number **Denominator**

The line shows that the top number (the numerator) is **divided by** the bottom number (the denominator).

There are three types of fractions:

1. **Common** (or **vulgar** or **proper**) fractions where the numerator is **less than** the denominator.

e.g.
$$\frac{1}{2}$$
, $\frac{3}{4}$, $\frac{1}{8}$

2. **Improper** (sometimes called **'top heavy'** fractions) where the numerator is **greater than** the denominator.

e.g.
$$\frac{5}{2}$$
, $\frac{7}{3}$, $\frac{19}{7}$

3. **Mixed numbers**, where the number has **whole** numbers and parts of whole numbers (common fractions).

e.g.
$$12\frac{1}{2}$$
, $345\frac{4}{9}$, $27\frac{11}{12}$

Remember, the value of a fraction is unchanged if the numerator and the denominator are **BOTH** multiplied by or are **BOTH** divided by the same number; for example:-

$$\frac{30}{40}$$
 is the same as $\frac{3}{4}$ (both top and bottom divided by 10)

$$\frac{3}{27}$$
 is the same as $\frac{1}{9}$ (both top and bottom divided by 3)

$$\frac{2}{3}$$
 is the same as $\frac{4}{6}$ (both top and bottom multiplied by 2)

$$\frac{1}{7}$$
 is the same as $\frac{6}{42}$ (both top and bottom multiplied by 6)

What is the numerator in the next example?

$$\frac{3}{4} = \frac{?}{28}$$

You must ask yourself by what have you multiplied the 4 (three-quarters) to get to 28. The answer is 7, so you must multiply the numerator (the three), by the same number (7).

So,
$$3 \times 7 = 21$$
:

The new numerator is 21:

$$\frac{3}{4} = \frac{21}{28}$$

What is the new denominator here?

$$\frac{6}{27} = \frac{2}{?}$$

By what have you divided 6 to get to 2?

Answer is by 3, so you must now divide 27 by 3 to give you the new denominator. $27 \div 3 = 9$ (new denominator)

So,
$$\frac{6}{27} = \frac{2}{9}$$

Now fill in these gaps.

Exercise 1

1.
$$\frac{2}{7} = \frac{?}{14}$$
 2. $\frac{4}{5} = \frac{?}{25}$ 3. $\frac{3}{8} = \frac{6}{?}$

2.
$$\frac{4}{5} = \frac{?}{25}$$

3.
$$\frac{3}{8} = \frac{6}{?}$$

4.
$$\frac{3}{10} = \frac{?}{40}$$
 5. $\frac{1}{7} = \frac{5}{?}$ 6. $\frac{4}{12} = \frac{1}{?}$

5.
$$\frac{1}{7} = \frac{5}{?}$$

6.
$$\frac{4}{12} = \frac{1}{?}$$

7.
$$\frac{10}{25} = \frac{?}{5}$$
 8. $\frac{9}{15} = \frac{3}{?}$ 9. $\frac{8}{64} = \frac{?}{8}$

8.
$$\frac{9}{15} = \frac{3}{?}$$

9.
$$\frac{8}{64} = \frac{?}{8}$$

10
$$\frac{18}{48} = \frac{3}{?}$$

REDUCING A FRACTION TO ITS LOWEST TERMS

(You may know this as 'cancelling')

Example 1

reduce
$$\frac{10}{12}$$
 to its lowest terms

First ask which number goes into **both** 10 and 12 (without a remainder, of course!)?

Answer is 2, so divide both numerator and denominator by 2. What does this give you?

$$\frac{10}{12} \div \frac{2}{2} = \frac{5}{6}$$

As there is no number which 'goes into' 5 and 6 this fraction cannot be reduced, so you have now finished cancelling.

Example 2

reduce $\frac{132}{198}$ to its lowest terms

1. Divide top and bottom by 2, to give

$$\frac{132}{198} \div \frac{2}{2} = \frac{66}{99}$$

Divide the new fraction by 11 2.

$$\frac{66}{99} \div \frac{11}{11} = \frac{6}{9}$$

3. Now divide this by 3

$$\frac{6}{9} \div \frac{3}{3} = \frac{2}{3}$$

This will reduce no more, and so it is the answer!

Exercise 2

1.
$$\frac{9}{18}$$
 2. $\frac{15}{25}$ 3. $\frac{42}{48}$ 4. $\frac{180}{240}$ 5. $\frac{210}{315}$

2.
$$\frac{15}{25}$$

3.
$$\frac{42}{48}$$

4.
$$\frac{180}{240}$$

5.
$$\frac{210}{315}$$

CHANGING MIXED NUMBERS TO IMPROPER FRACTIONS

Example 1

$$2\frac{1}{4}$$
 is a mixed number

How do I change this into an improper fraction?

Multiply the whole number by the denominator $2 \times 4 = 8$ 1.

- Add this to the numerator 8 + 1 = 9
- The denominator stays the same
- The new numerator, 9, is placed over the 4 giving $\frac{9}{4}$ 4.

Example 2

change $5\frac{3}{7}$ to an improper fraction.

- 1. Multiply the whole number 5, by the denominator 7, $5 \times 7 = 35$
- Add to this the numerator 35 + 3 = 382.
- Put this over the original denominator, giving $\frac{38}{7}$ (answer) 3.

Example 3

$$4\frac{3}{10}$$
 to an improper fraction is $\frac{43}{10}$

Go through the steps to check how this answer was reached, then try the examples.

Exercise 3

1.
$$3\frac{1}{2}$$
 2. $4\frac{2}{5}$ 3. $3\frac{7}{8}$ 4. $15\frac{1}{2}$ 5. $3\frac{5}{9}$

2.
$$4\frac{2}{5}$$

3.
$$3\frac{7}{8}$$

4.
$$15\frac{1}{2}$$

5.
$$3\frac{5}{6}$$

CHANGING IMPROPER FRACTIONS TO MIXED NUMBERS

Example 1

Divide the numerator by the denominator $22 \div 7 = 3$ remainder 1. The 3 is the whole number and the remainder is the new numerator. The denominator stays the same.

Answer =
$$3\frac{1}{7}$$

Example 2

$$\frac{7}{2}$$
 as a mixed number?

Divide the 7 by the 2, this gives 3 remainder 1. The 3 is the whole number, the remainder is the numerator.

Answer =
$$3\frac{1}{2}$$

Exercise 4

1.
$$\frac{13}{2}$$

2.
$$\frac{23}{7}$$

3.
$$\frac{18}{5}$$

$$\frac{13}{2}$$
 2. $\frac{23}{7}$ 3. $\frac{18}{5}$ 4. $\frac{29}{11}$ 5.

$$\frac{5}{12}$$

MULTIPLICATIONS OF FRACTIONS

$$\frac{1}{2}$$
 x $\frac{1}{3}$

Steps to take to multiply

- 1. See if any numbers will cancel in this case, none will.
- 2. Multiply the numerators (top numbers) to give the new numerator $1 \times 1 = 1$.
- 3. Multiply the denominators (bottom numbers) to give the new denominator $2 \times 3 = 6$.

So the answer is
$$\frac{1\times 1}{2\times 3} = \frac{1}{6}$$

Example 2

$$\frac{2}{3} \times \frac{3}{4}$$

1. Will any numbers cancel? Yes 2 will go into 4. Then 3 will go into 3.

CANCEL

- 2. Now multiply the numerators $(1 \times 1 = 1)$
- 3. Multiply the denominators $(1 \times 2 = 2)$

Answer =
$$\frac{1}{2}$$

The main point to remember is that, when you are cancelling, you can cancel **any numerator** with **any denominator**:

Do not worry if you have not cancelled fully at this stage – you will be able to reduce the fraction to its lowest terms at the end of your calculation.

MULTIPLICATION WITH MIXED NUMBERS

$$3\frac{1}{2} \times \frac{4}{7}$$

FIRST STEP – change mixed numbers to IMPROPER FRACTIONS.

So,
$$3\frac{1}{2}$$
 becomes $\frac{7}{2}$

The sum now looks like this:

1 2
$$\frac{\cancel{x}}{\cancel{x}} \times \frac{\cancel{x}}{\cancel{x}} = \frac{1}{1} \times \frac{2}{1} = \frac{2}{1}$$
 1 1

Answer = 2

Notice that cancelling takes place as usual **after** you have changed the mixed numbers to improper fractions.

Example 2

$$1\frac{4}{9} \times 2\frac{1}{2}$$
 becomes $\frac{13}{9} \times \frac{5}{2} = \frac{65}{18} = 3\frac{11}{18}$

Or set the sum out as:

$$1\frac{4}{9} \times 2\frac{1}{2} = \frac{13}{9} \times \frac{5}{2} = \frac{65}{18}$$
$$= 3\frac{11}{18}$$

Example 3

2 x
$$\frac{3}{7}$$
 2 is written as '2 over 1' or $\frac{2}{1}$ so the sum can be written as:

$$\frac{2}{1}$$
 x $\frac{3}{7}$ = $\frac{6}{7}$ or set the sum out as:

$$2 \times \frac{3}{7} = \frac{2}{1} \times \frac{3}{7} = \frac{6}{7}$$

nple 4 1
$$\frac{7}{8} \times 4$$
 becomes $\frac{7}{8} \times \frac{4}{1}$ Cancel 4 and 8

$$=\frac{7}{2} \times \frac{1}{1} = \frac{7}{2} = 3\frac{1}{2}$$
 or set the sum out as: $\frac{7}{8} \times 4 = \frac{7}{2} \times \frac{1}{1} = \frac{7}{2} = 3\frac{1}{2}$

Example 5

$$5 \times 2\frac{3}{7}$$
 becomes $\frac{5}{1} \times \frac{17}{7} = \frac{85}{7} = 12\frac{1}{7}$

Example 6

What is two thirds of four and a half? You know that 'of' means multiply, so you can now write this sum as follows:

Now try Exercise 5, use the examples given above to help you.

1.
$$\frac{3}{5} \times \frac{4}{7}$$

2.
$$\frac{3}{5}$$
x $\frac{5}{6}$

3.
$$\frac{3}{5} \times \frac{1}{3}$$

1.
$$\frac{3}{5} \times \frac{4}{7}$$
 2. $\frac{3}{5} \times \frac{5}{9}$ 3. $\frac{3}{5} \times \frac{1}{3}$ 4. $2\frac{1}{2} \times \frac{4}{5}$

5.
$$3\frac{1}{2} \times 4\frac{1}{7}$$
 6. $3 \times \frac{2}{7}$ 7. $\frac{3}{5} \times 5$ 8. $2 \times 1\frac{1}{2} \times \frac{1}{3}$

. 3 x
$$\frac{2}{7}$$

7.
$$\frac{3}{5} \times 5$$

8.
$$2 \times 1\frac{1}{2} \times \frac{1}{3}$$

9.
$$3\frac{3}{4} \times 1\frac{3}{5} \times 1\frac{1}{8}$$
 10. $\frac{4}{5}$ of $1\frac{1}{2}$

10.
$$\frac{4}{5}$$
 of $1\frac{1}{2}$

University of Northampton

DIVISION OF FRACTIONS

Remember that you must change mixed numbers to improper fractions

- The first fraction remains the same.
- 2. Change the division sign to a multiplication sign.
- 3. Invert (or turn upside down) the second fraction.
- 4. Carry on as you would for multiplication of fractions.

So using the steps above:

Example 1

$$\frac{2}{3} \div \frac{5}{7}$$

$$\frac{2}{3} \div \frac{5}{7} = \frac{2}{3} \times \frac{7}{5} = \frac{14}{15}$$

Example 2

$$1\frac{4}{5} \div \frac{2}{3}$$
 becomes $\frac{9}{5} \times \frac{3}{2} = \frac{27}{10} = 2\frac{7}{10}$

Example 3

$$1\frac{4}{5} \div 2\frac{1}{3}$$
 becomes $\frac{9}{5} \div \frac{7}{3} = \frac{9}{5} \times \frac{3}{7} = \frac{27}{35}$

Example 4

4 divided by
$$\frac{3}{4}$$
 becomes $\frac{4}{1} \times \frac{4}{3} = \frac{16}{3} = 5\frac{1}{3}$

Example 5

$$2\frac{1}{2}$$
 divided by 10 = $\frac{5}{2} \div \frac{10}{1}$

$$= \frac{1}{2} \times \frac{1}{10} = \frac{1 \times 1}{2 \times 2} = \frac{1}{4}$$

1.
$$\frac{3}{4} \div \frac{1}{2}$$

2.
$$\frac{5}{6} \div \frac{2}{3}$$

3.
$$2\frac{1}{2} \div 1\frac{1}{2}$$

4.
$$5\frac{1}{3} \div \frac{4}{9}$$

1.
$$\frac{3}{4} \div \frac{1}{2}$$
 2. $\frac{5}{6} \div \frac{2}{3}$ 3. $2\frac{1}{2} \div 1\frac{1}{4}$ 4. $5\frac{1}{3} \div \frac{4}{9}$ 5. $\frac{5}{12} \div 2\frac{1}{2}$

6.
$$1\frac{1}{2} \div \frac{3}{7}$$

7.
$$1\frac{3}{4} \div \frac{3}{8}$$

6.
$$1\frac{1}{2} \div \frac{3}{7}$$
 7. $1\frac{3}{4} \div \frac{1}{8}$ 8. $1\frac{1}{6} \div 4\frac{2}{3}$ 9. $\frac{3}{5} \div \frac{9}{20}$ 10. $3\frac{1}{3} \div \frac{5}{9}$

$$9. \qquad \frac{3}{5} \div \frac{9}{20}$$

10.
$$3\frac{1}{3} \div \frac{5}{9}$$

ADDITION OF FRACTION

Just as we can add 4 bananas to 3 bananas (7 bananas) we can add 4 twelfths to 3 twelfths (7 twelfths). Similarly, if we try to add 4 bananas to 3 oranges we still have 4 bananas and 3 oranges, then we cannot add 4 fifths to 3 sevenths.

You can only add (or subtract) fractions when the denominators have the same number.

Just as
$$\frac{1}{3} + \frac{1}{3} = \frac{1+1}{3} = \frac{2}{3}$$

Notice that only the numerators are added!

$$\frac{1}{5} + \frac{2}{5} = \frac{3}{5}$$

Two or more fractions which have **different denominators** cannot be added until you alter them so that the denominators are the same.

You will now use your knowledge of equivalent fractions and lowest common multiple!

Example 1

 $\frac{1}{2} + \frac{1}{3}$ cannot be added yet until the denominators have the same number. Ask which is the lowest number into which both 2 and 3 will divide exactly? 6 is the lowest number.

You know that $\frac{1}{2}$ is also $\frac{3}{6}$ and that $\frac{1}{3}$ is also $\frac{2}{6}$

Now that you have the equivalent fractions with the same denominator, the adding can take place,

$$\frac{3}{6} + \frac{2}{6} = \frac{5}{6}$$

Only Numerators Are Added!

Example 2

 $\frac{2}{7} + \frac{3}{4}$ 28 is the lowest number into which 4 and 7 will divide.

$$\frac{2}{7}$$
 can also be written $\frac{8}{28}$ and $\frac{3}{4}$ can also be written $\frac{21}{28}$

Now that the denominators are the same the two fractions can be added to give:

$$\frac{8}{28} + \frac{21}{28} = \frac{8+21}{28} = \frac{29}{28} = 1\frac{1}{28}$$

If you have **mixed numbers**, there are various methods which you can use. We suggest that the following way may be the simplest:

Example 3

$$1\frac{1}{2} + 2\frac{1}{3}$$

1. Add the whole numbers

$$3 + \frac{1}{2} + \frac{1}{3}$$

2. Now carry on as before for the fraction parts

$$3\frac{3}{6} + \frac{2}{6} = 3\frac{3+2}{6} = 3\frac{5}{6}$$

Make Sure that you write the whole number each time (otherwise, you may forget it) **and** that you write it **bigger** than the fraction

Example 4

$$\frac{2}{3} + \frac{4}{9}$$

$$=\frac{6}{9}+\frac{4}{9}$$

$$=\frac{10}{9}=1\frac{1}{9}$$

$$2\frac{3}{4} + 1\frac{1}{2}$$

$$12\frac{3}{4} + 1\frac{2}{4}$$

$$= 13\frac{5}{4}$$

$$= 14\frac{1}{4}$$

Example 6

$$4\frac{1}{2} + 3\frac{5}{6} + 2\frac{1}{3}$$

$$=9\frac{3}{6}+\frac{5}{6}+\frac{2}{6}$$

$$=9\frac{3+5+2}{6}$$

$$=9\frac{10}{6}$$

$$=9+1\frac{4}{6}$$

$$= 9 + 1\frac{2}{3}$$

$$= 10\frac{2}{3}$$

Exercise 7

1.
$$\frac{3}{4} + \frac{1}{2}$$

2.
$$\frac{1}{7} + \frac{2}{3}$$

3.
$$\frac{3}{4} + \frac{1}{8}$$

1.
$$\frac{3}{4} + \frac{1}{2}$$
 2. $\frac{1}{7} + \frac{2}{3}$ 3. $\frac{3}{4} + \frac{1}{8}$ 4. $\frac{4}{5} + \frac{2}{3}$

5.
$$\frac{3}{4} + \frac{4}{5}$$

6.
$$5\frac{1}{2} + 1\frac{1}{4}$$

7.
$$4\frac{3}{5} + 1\frac{1}{4}$$

5.
$$\frac{3}{4} + \frac{4}{5}$$
 6. $5\frac{1}{2} + 1\frac{1}{4}$ 7. $4\frac{3}{5} + 1\frac{1}{4}$ 8. $7\frac{1}{3} + 1\frac{1}{12}$

9.
$$4\frac{1}{3} + \frac{2}{3}$$

9.
$$4\frac{1}{3} + \frac{2}{3}$$
 10. $5\frac{3}{8} + 1\frac{3}{4} + 4\frac{7}{8} + 3\frac{5}{16}$

SUBTRACTION OF FRACTIONS

As in addition of fractions, the denominators of the fractions **must** be the same;

Example 1

$$\frac{3}{4} - \frac{1}{4} = \frac{3-1}{4} = \frac{2}{4} = \frac{1}{2}$$

only the numerators are subtracted!

$$\frac{1}{5}$$
 - $\frac{1}{10}$ $\frac{1}{5}$ can be written as $\frac{2}{10}$ so we now have $\frac{2}{10}$ - $\frac{1}{10}$ = $\frac{1}{10}$

Example 3

$$\frac{3}{4} - \frac{2}{3}$$

LCM is
$$12\frac{3}{4} = \frac{9}{12}$$
 and $\frac{2}{3} = \frac{8}{12}$ so we can now write $\frac{9}{12} - \frac{8}{12} = \frac{9-8}{12} = \frac{1}{12}$

When you have mixed numbers we suggest the following method:

1. Change mixed numbers to improper fractions:

$$1\frac{5}{6} - \frac{1}{3}$$
 becomes $\frac{11}{6} - \frac{1}{3}$

2. Carry on as before - finding LCM and so the equivalent fractions, giving

$$\frac{11}{6} - \frac{2}{6} = \frac{11 - 2}{6} = \frac{9}{6} = 1\frac{3}{6} = 1\frac{1}{2}$$

Example 4

$$3\frac{3}{4} - 2\frac{7}{8}$$

$$=\frac{15}{4}-\frac{23}{8}$$

$$=\frac{30}{8}-\frac{23}{8}$$

$$=\frac{30-23}{8}$$

$$=\frac{7}{8}$$

$$6 - \frac{2}{3}$$

$$=\frac{6}{1}-\frac{2}{3}$$

$$=\frac{18}{3}-\frac{2}{3}$$

$$=\frac{18-2}{3}$$

$$=\frac{16}{3}$$

$$=5\frac{1}{3}$$

Exercise 8

1.
$$\frac{7}{8} - \frac{3}{8}$$

2.
$$\frac{2}{7} - \frac{1}{14}$$

3.
$$\frac{1}{2} - \frac{3}{8}$$

1.
$$\frac{7}{8} - \frac{3}{8}$$
 2. $\frac{2}{7} - \frac{1}{14}$ 3. $\frac{1}{2} - \frac{3}{8}$ 4. $\frac{4}{5} - \frac{3}{10}$

5.
$$\frac{3}{11} - \frac{1}{22}$$

6.
$$1\frac{1}{2} - \frac{2}{3}$$

7.
$$3\frac{1}{3} - \frac{5}{12}$$

5.
$$\frac{3}{11} - \frac{1}{22}$$
 6. $1\frac{1}{2} - \frac{2}{3}$ 7. $3\frac{1}{3} - \frac{5}{12}$ 8. $2\frac{5}{12} - 1\frac{7}{12}$

9.
$$3\frac{3}{4} - 1\frac{7}{8}$$
 10. $5 - \frac{3}{8}$

10.
$$5 - \frac{3}{8}$$

QUESTIONS WITH BOTH ADDING AND SUBTRACTING

Example 1

$$2\frac{1}{2} - 1\frac{1}{8} + 3\frac{1}{4}$$

In this case convert all the mixed numbers to improper fractions, and carry on as before, taking care not to confuse the signs

$$=\frac{5}{2}-\frac{9}{8}+\frac{13}{4}$$

$$=\frac{20}{8}-\frac{9}{8}+\frac{26}{8}$$

$$= \frac{20 - 9 + 26}{8}$$

$$=\frac{11+26}{8}$$

$$=\frac{37}{8}=4\frac{5}{8}$$

1.
$$2\frac{1}{4} - \frac{1}{8} + 2\frac{1}{2}$$

2.
$$\frac{1}{5} - \frac{1}{10} + \frac{1}{20}$$

1.
$$2\frac{1}{4} - \frac{1}{8} + 2\frac{1}{2}$$
 2. $\frac{1}{5} - \frac{1}{10} + \frac{1}{20}$ 3. $2\frac{1}{6} - 1\frac{5}{6} + \frac{7}{12}$

4.
$$1\frac{1}{4} + \frac{1}{2} - \frac{5}{8}$$

4.
$$1\frac{1}{4} + \frac{1}{2} - \frac{5}{8}$$
 5. $5\frac{1}{10} - 3\frac{1}{2} + 1\frac{1}{4}$

University of Northampton

ANSWERS

Exercise 1

- 2. $\frac{20}{25}$ 3. $\frac{6}{16}$ 4. $\frac{12}{40}$ 5. $\frac{5}{35}$
- 6.
- 7. $\frac{2}{5}$
- 8. $\frac{3}{5}$ 9.
- 10.

Exercise 2

- 2. $\frac{3}{5}$
- 3. $\frac{7}{8}$
- 4. $\frac{3}{4}$
- 5.

Exercise 3

- 2. $\frac{22}{5}$
- 3.

Exercise 4

- 2. $3\frac{2}{7}$ 3. $3\frac{3}{5}$ 4. $2\frac{7}{11}$ 5. $4\frac{5}{12}$

Exercise 5

- 2. $\frac{1}{3}$
- 3. $\frac{1}{5}$ 4. 2
- 5. $14\frac{1}{2}$

- 7. 3
- 8. 1
- 9. $6\frac{3}{4}$
- 10. $1\frac{1}{5}$

- 2. $1\frac{1}{4}$
- 3. 2
- 4. 12
- 5.

- 6.
- 7. 14
- 8.
- 9.
- 10. 6

Exercise 7

1.
$$1\frac{1}{4}$$

2.
$$\frac{17}{21}$$

3.
$$\frac{7}{8}$$

4.
$$1\frac{7}{15}$$

$$1\frac{1}{4}$$
 2. $\frac{17}{21}$ 3. $\frac{7}{8}$ 4. $1\frac{7}{15}$ 5. $1\frac{11}{20}$

6.
$$6\frac{3}{4}$$

7.
$$5\frac{17}{20}$$

8.
$$8\frac{5}{1}$$

6.
$$6\frac{3}{4}$$
 7. $5\frac{17}{20}$ 8. $8\frac{5}{12}$ 9. 5 10. $15\frac{5}{16}$

Exercise 8

1.
$$\frac{1}{2}$$

2.
$$\frac{3}{14}$$

3.
$$\frac{1}{8}$$

4.
$$\frac{1}{2}$$

$$\frac{1}{2}$$
 2. $\frac{3}{14}$ 3. $\frac{1}{8}$ 4. $\frac{1}{2}$ 5. $\frac{5}{22}$

6.
$$\frac{5}{6}$$

$$\frac{5}{6}$$
 7. $2\frac{11}{12}$ 8. $\frac{5}{6}$ 9. $1\frac{7}{8}$ 10. $4\frac{5}{8}$

8.
$$\frac{5}{6}$$

9.
$$1\frac{7}{8}$$

10.
$$4\frac{5}{8}$$

1.
$$4\frac{5}{8}$$
 2. $\frac{3}{20}$ 3.

2.
$$\frac{3}{20}$$

3.
$$\frac{11}{12}$$

4.
$$1\frac{1}{8}$$

$$\frac{11}{12}$$
 4. $1\frac{1}{8}$ 5. $2\frac{17}{20}$