INEQUALITIES

There are four signs which we use in dealing with inequalities.
> means greater than
\geq means greater than or equal to
< means less than
\leq means less than or equal to

Example

$6>2$ reads 6 is greater (or bigger) than 2.
$-3<0$ reads minus 3 is less (or smaller) than 0 .

RULES OF INEQUALITIES

Note

1. > greater than
E.g. c > 5 Reads c is GREATER than $5, \mathrm{c}$ could be 6 or 100 or even

$$
5 \frac{1}{2} \text { but could not be } 4 \text {. }
$$

2. < less than
E.g. c < 3 Reads c is LESS than 3, c could be 2 or -6 or even
$2 \frac{3}{4}$ but could not be 4 .
3. \geq greater than or equal to
E.g. $\mathrm{y} \geq 7$ Reads y is GREATER than or EQUAL to 7 . y could be 7 or 100 or even $7 \frac{1}{2}$ but could not be 6 .
4. \leq less than or equal to
E.g. $\mathrm{y} \leq 0 \quad$ Reads y is LESS than or EQUAL to zero. y could be 0 or -5 or even -0.1 but could not be 1 .

Remember the arrow always points to the smaller quantity
5. The equation $\mathrm{c}=6$ has only ONE solution, but in an inequality such as $\mathrm{c}<6, \mathrm{c}$ can have ANY numerical values less than 6 .
6. Inequalities can be solved in similar ways to equations.

Example 1

Consider the inequality $2 \mathrm{c}>6$ (Read 2 c is greater than 6$)$

1. Add an equal quantity to both sides
$2 c+4>6+4$
i.e. $2 \mathrm{c}+4>10$
2. Subtract an equal quantity from both sides

2c-6>6-6
i.e. $2 c-6>0$
3. Multiply each side by the same POSITIVE number
$2 \mathrm{c}(3)>6$ (3) i.e. $6 \mathrm{c}>18$
4. Divide each side by the same positive number
$2 \mathrm{c}+2>6+2$
i.e. c > 3

After each of the operations 1 to 4 the inequality remains unaltered.

MULTIPLYING AND DIVIDING BY A NEGATIVE NUMBER

Note $\quad 3<7$
When both sides of the inequality are multiplied by a negative number, for example -2 , the inequality becomes

$$
-6<-14
$$

BUT this is NOT TRUE if the inequality sign is reversed
$-6>-14$
the statement is now TRUE
Similarly $\quad 20>15$
If both sides of the inequality are divided by a negative number, for example -5 , the inequality sign needs reversing.
$20>15$
$+(-5)$
$-4<-3$

Summary

When MULTIPLYING or DIVIDING an inequality by a NEGATIVE number. the inequality sign must be reversed.

Development

Read through the following examples.

1. Solve for $\mathrm{c}: 2 \mathrm{c}+4>10$

Treat this like a simple equation but replace the equals sign with $>$.

$$
\begin{aligned}
& 2 c+4>10 \quad \text { See pack on Linear Equations } \\
& 2 c>10-4 \\
& 2 c>6 \\
& c>\frac{6}{2} \\
& c>3
\end{aligned}
$$

On a number line this would be represented as
2. Solve for c: $16 \leq 3 c-5$
$16+5 \leq 3 c$
$21 \leq 3 c$

$$
\text { OR } \begin{aligned}
& \frac{21}{3} \leq c \\
& \\
& \begin{array}{l}
7 \leq c \\
c \geq 7
\end{array}
\end{aligned}
$$

On a number line this would be represented as
3. Solve for $\mathrm{c}: ~ 3 c+15>4 \mathrm{c}-6$

$$
15+6>4 c-3 c
$$

$$
21>c
$$

On a number line this would be represented as
4. Solve for $\mathrm{c}: 16<4-2 \mathrm{c}$

$$
\begin{aligned}
16-4 & <-2 c \\
\frac{12}{2} & <-c \\
6 & <-c
\end{aligned}
$$

To find +c MULTIPLY BOTH SIDES of the INEQUALITY by -1. REMEMBER THIS CHANGES THE INEQUALITY SIGN.

$$
\begin{array}{ll}
\text { OR } & -6>c \\
& c<-6
\end{array}
$$

On a number line this would be represented as

Exercise 1

Solve the following for c

1. $3 \mathrm{c}+4>16$
2. $3+5 c>23$
3. $14<10-2 \mathrm{c}$
4. $6 \leq 8 c-18$
5. $5>2+3 c$
6. $2 \mathrm{c}-7>-9$
7. $-4 \leq 5-3 c$
8. $-3<7-2 \mathrm{c}$
9. $5 \mathrm{c}-4 \geq-14$
10. $2 \mathrm{c}-3 \leq 1$

GRAPHS OF INEQUALITIES

You can indicate on a diagram the regions represented by inequalities, by shading as shown below.

Example 1

$$
c \geq 4
$$

Draw the line $\mathrm{c}=4$ and shade to the right of it as the values of c on this side are bigger than 4 .

Example 2

$$
y \leq-2
$$

Example 3

Denote by shading the region where $\mathrm{c} \leq 4$ and $\mathrm{y} \geq 3$

Example 4

Indicate, by shading, the region which represents $c>0, \mathrm{y}<1$ and $\mathrm{c}+\mathrm{y} \geq 5$.
First we have to draw the line $c+y \geq 5$.
See Unit on Simple Graphs.
Rearranging $c+y \geq 5$ we get $y \geq-c+5$.
Draw this line as shown and shade the appropriate area where $y \geq-c+5$, c > 0 and $\mathrm{y}<1$ intersect.

Exercise 2

Shade on separate diagrams

1. $c \geq 2$
2. $y \leq 3$
3. $\mathrm{c} \geq-3$
4. $y \geq-1$
5. $c \geq 0$
6. $y \geq 4, c \leq 2$ indicate the required region by shading
7. $\quad c \geq-3, \quad Y \leq 2$ indicate the required region by shading
8. $\quad c \leq 3, \quad Y \geq 4, \quad c+y \geq 2$ indicate the required region by shading
9. $c \geq 2, \quad Y \leq 5, \quad 2 c+y \geq 6$ indicate the required region by shading
10. $c \leq 0, Y \geq 0, \quad c+y \leq 5$ indicate the required region by shading

So far all the inequalities have been \leq or \geq. There is a convention for writing $<$ and $>$. Instead of a complete line a broken line is used.

Example 1

$$
\begin{aligned}
& x<3 \\
& c<3
\end{aligned}
$$

Example 2

Example 3
C > - 2

$y<4$

Example 4

$y>3$

Example 5

Example 6

$$
y<1 / 2 c-2
$$

$$
2 y<c-4
$$

Exercise 3

Shade on separate diagrams

1. $\mathrm{c}<4$
2. $y>-3$
3. $Y>2, c<-2$ indicate the required region by shading
4. $c \geq 3, Y<2$ indicate; the required region by shading $5 . c+y>2$
5. $c+y>1, c \geq 2$ indicate the required region by shading
6. $c>1, Y \leq 2, c+y \geq 5$ indicate the required region by shading

ANSWERS

Exercise 1

1. $c>4$
2. $c>4$
3. $\mathrm{c}<-2$
4. $3 \leq \mathrm{c} O \mathrm{RC}_{\mathrm{C}} \geq 3$
5. $1>c$ OR c <1
6. $c>-1$
7. $\mathrm{c} \leq 3$
8. $\mathrm{c}<5$
9. $\quad c \leq-21$
10. $c \leq 2$

Exercise 2

1.

2.

3.

4.

Page 11 of 16
5.

6.

C
7.

Page 12 of 16

Learning Development

8.

9.

10.

Page 13 of 16

Exercise 3

1.

2.

3.

4.

5.

6.

7.

