FUNCTIONS

In the unit on simple graphs you were dealing with equations like $y=2 x+5$. To find the value of y, a particular value of x was chosen and then substituted into the equation
e.g. when $x=1$

$$
\begin{aligned}
& y=2(1)+5 \\
& y=2+5 \\
& y=7
\end{aligned}
$$

The value of y depends on the value of x we chose. Therefore x is called the INDEPENDENT VARIABLE and y is called the DEPENDENT VARIABLE i.e. y is a function of x
So instead of saying $y=2 x+5$, we now say $\mathrm{f}: x$ Æ $2 x+5$ or $\mathrm{f}(x)=2 x+5$
This means the function of x is $2 x+5$.
This relationship can be shown on a MAPPING diagram.

Example 1

Draw the mapping diagram for $x=0,1,2$, 3, f: $x \nVdash 2 x+5$

(NB Substitute 0, 1, 2, 3 for x to find the corresponding value).

Development

Example 2

Draw the mapping diagram for $x=-2,-1,0,1,2,3 f(x)=x^{2}-4$

Exercise 1

1. Draw the mapping diagram for $\mathrm{f}(x)=x+2$ for the values of $x=0,1,2,3,4$
2. Draw the mapping diagram for $f(x)=x^{2}-x$ for the values of $x=-1,0,1,2,3$

The set of values of x which is used in the mapping is called the DOMAIN. In Exercise 1 question 1 the domain is $0-4$. The corresponding values which are worked out when x is substituted in the function are called the IMAGES. In Exercise 1 question 1 the IMAGES are 2, 3, 4,5, 6 . The set of the images is called the RANGE i.e. the range is $2-6$.
$(x) \quad x+2$

The above can be written
$f(0)=0+2=2$
$f(1)=1+2=3$
$\mathrm{f}(2)=2+2=4$
$f(3)=3+2=5$
$f(4)=4+2=6$

Example 3

Find $f(2)$ if $f(x)=x^{2}-1$
$f(2)$ means the value of the function when $x=2$

$$
\begin{aligned}
f(2) & =2^{2}-1 \\
& =4-1 \\
& =3
\end{aligned}
$$

Example 4

Find $f(-1)$ if $f(x)=3 x-2$
$f(-1)$ means the value of the function when $x=-1$

$$
\begin{aligned}
f(-1) & =3(-1)-2 \\
& =-3-2 \\
& =-5
\end{aligned}
$$

Example 5

Calculate the range of the function f if f is defined by $\mathrm{f}: x \not \subset x^{2}-4$ for $-1 \geq x \geq 2$

NB " $\mathrm{f}: \mathrm{x}$ " is the same as " $\mathrm{f}(x)$ ". The end values of the domain i.e - 1 and 2 DO NOT ALWAYS give the end points of the range therefore work out all the values as shown below.

$$
x \ldots x^{2}-4
$$

The range is from -4 to 0 .

Exercise 2

1. Find $\mathrm{f}(2)$ when $\mathrm{f}(\mathrm{x})=3 x-3$
2. Find $f(0)$ and $f(-2)$ when $f(x)=x^{2}-4$
3. Find $f(3)$ and $f(-3)$ when $f(x)=x^{2}$
4. If $\mathrm{f}(x)=x^{2}-2 x$ find the values of $\mathrm{f}(2)$ and $\mathrm{f}(0)$
5. Find the range of the function $\mathrm{f}(x)=2 x^{2}$ if $-1 \leq x \leq 3$

ANSWERS

Exercise 1

1. $\mathrm{f}(x)=x+2$

2. $\mathrm{f}(x)=x^{2}-x$

Exercise 2

1. 3
2. $-4 \quad 0$
3. 99
4. 00
5. Range is from 0 to 18
